QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#843082#9967. Imbalanced Teamsucup-team4435#WA 0ms3764kbC++207.8kb2025-01-04 16:42:092025-01-04 16:42:16

Judging History

你现在查看的是最新测评结果

  • [2025-01-04 16:42:16]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3764kb
  • [2025-01-04 16:42:09]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;

#define all(a) begin(a), end(a)
#define len(a) int((a).size())

/*
 ! WARNING: MOD must be prime if you use division or .inv().
 ! WARNING: 2 * (MOD - 1) must be smaller than INT_MAX
 * Use .value to get the stored value.
 */
template<typename T>
int normalize(T value, int mod) {
    if (value < -mod || value >= 2 * mod) value %= mod;
    if (value < 0) value += mod;
    if (value >= mod) value -= mod;
    return value;
}

template<int mod>
struct static_modular_int {
    static_assert(mod - 2 <= std::numeric_limits<int>::max() - mod, "2(mod - 1) <= INT_MAX");
    using mint = static_modular_int<mod>;

    int value;

    static_modular_int() : value(0) {}
    static_modular_int(const mint &x) : value(x.value) {}

    template<typename T, typename U = std::enable_if_t<std::is_integral<T>::value>>
    static_modular_int(T value) : value(normalize(value, mod)) {}

    static constexpr int get_mod() {
		return mod;
	}

    template<typename T>
    mint power(T degree) const {
        mint prod = 1, a = *this;
        for (; degree > 0; degree >>= 1, a *= a)
            if (degree & 1)
                prod *= a;

        return prod;
    }

    mint inv() const {
        return power(mod - 2);
    }

    mint& operator=(const mint &x) {
        value = x.value;
        return *this;
    }

    mint& operator+=(const mint &x) {
        value += x.value;
        if (value >= mod) value -= mod;
        return *this;
    }

    mint& operator-=(const mint &x) {
        value -= x.value;
        if (value < 0) value += mod;
        return *this;
    }

    mint& operator*=(const mint &x) {
        value = int64_t(value) * x.value % mod;
        return *this;
    }

    mint& operator/=(const mint &x) {
        return *this *= x.inv();
    }

    friend mint operator+(const mint &x, const mint &y) {
        return mint(x) += y;
    }

    friend mint operator-(const mint &x, const mint &y) {
        return mint(x) -= y;
    }

    friend mint operator*(const mint &x, const mint &y) {
        return mint(x) *= y;
    }

    friend mint operator/(const mint &x, const mint &y) {
        return mint(x) /= y;
    }

    mint& operator++() {
        ++value;
        if (value == mod) value = 0;
        return *this;
    }

    mint& operator--() {
        --value;
        if (value == -1) value = mod - 1;
        return *this;
    }

    mint operator++(int) {
        mint prev = *this;
        value++;
        if (value == mod) value = 0;
        return prev;
    }

    mint operator--(int) {
        mint prev = *this;
        value--;
        if (value == -1) value = mod - 1;
        return prev;
    }

    mint operator-() const {
        return mint(0) - *this;
    }

    bool operator==(const mint &x) const {
        return value == x.value;
    }

    bool operator!=(const mint &x) const {
        return value != x.value;
    }

    bool operator<(const mint &x) const {
        return value < x.value;
    }

    template<typename T>
    explicit operator T() {
        return value;
    }

    friend std::istream& operator>>(std::istream &in, mint &x) {
        std::string s;
        in >> s;
        x = 0;
        bool neg = s[0] == '-';
        for (const auto c : s)
            if (c != '-')
                x = x * 10 + (c - '0');

        if (neg)
            x *= -1;

        return in;
    }

    friend std::ostream& operator<<(std::ostream &out, const mint &x) {
        return out << x.value;
    }

    static int primitive_root() {
        if constexpr (mod == 1'000'000'007)
            return 5;
        if constexpr (mod == 998'244'353)
            return 3;
        if constexpr (mod == 786433)
            return 10;

        static int root = -1;
        if (root != -1)
            return root;

        std::vector<int> primes;
        int value = mod - 1;
        for (int i = 2; i * i <= value; i++)
            if (value % i == 0) {
                primes.push_back(i);
                while (value % i == 0)
                    value /= i;
            }

        if (value != 1)
            primes.push_back(value);

        for (int r = 2;; r++) {
            bool ok = true;
            for (auto p : primes)
                if ((mint(r).power((mod - 1) / p)).value == 1) {
                    ok = false;
                    break;
                }

            if (ok)
                return root = r;
        }
    }
};

constexpr int MOD = 1'000'000'007;
// constexpr int MOD = 998'244'353;
using mint = static_modular_int<MOD>;

/*
 ! WARNING: MOD must be prime.
 * Define modular int class above it.
 * No need to run any init function, it dynamically resizes the data.
 */
namespace combinatorics {
    std::vector<mint> fact_, ifact_, inv_;

    void resize_data(int size) {
        if (fact_.empty()) {
            fact_ = {mint(1), mint(1)};
            ifact_ = {mint(1), mint(1)};
            inv_ = {mint(0), mint(1)};
        }
        for (int pos = fact_.size(); pos <= size; pos++) {
            fact_.push_back(fact_.back() * mint(pos));
            inv_.push_back(-inv_[MOD % pos] * mint(MOD / pos));
            ifact_.push_back(ifact_.back() * inv_[pos]);
        }
    }

    struct combinatorics_info {
        std::vector<mint> &data;

        combinatorics_info(std::vector<mint> &data) : data(data) {}

        mint operator[](int pos) {
            if (pos >= static_cast<int>(data.size())) {
                resize_data(pos);
            }
            return data[pos];
        }
    } fact(fact_), ifact(ifact_), inv(inv_);

    // From n choose k.
    // O(max(n)) in total.
    mint choose(int n, int k) {
        if (n < k || k < 0 || n < 0) {
            return mint(0);
        }
        return fact[n] * ifact[k] * ifact[n - k];
    }

    // From n choose k.
    // O(min(k, n - k)).
    mint choose_slow(int64_t n, int64_t k) {
        if (n < k || k < 0 || n < 0) {
            return mint(0);
        }
        k = std::min(k, n - k);
        mint result = 1;
        for (int i = k; i >= 1; i--) {
            result *= (n - i + 1);
            result *= inv[i];
        }
        return result;
    }

    // Number of balanced bracket sequences with n open and m closing brackets.
    mint catalan(int n, int m) {
        if (m > n || m < 0) {
            return mint(0);
        }
        return choose(n + m, m) - choose(n + m, m - 1);
    }

    // Number of balanced bracket sequences with n open and closing brackets.
    mint catalan(int n) {
        return catalan(n, n);
    }
} // namespace combinatorics

using namespace combinatorics;

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);

    int n, k;
    cin >> n >> k;
    vector<int> a(n);
    for (auto &x : a) {
        cin >> x;
    }
    sort(all(a));

    int p1 = k - 1;
    int p2 = n - k;
    cout << accumulate(a.begin() + p2, a.end(), 0ll) - accumulate(a.begin(), a.begin() + p1 + 1, 0ll) << ' ';

    if (a[0] == a.back()) {
        cout << choose(n, 2 * k) * choose(2 * k, k) / 2 << '\n';
        return 0;
    }

    int l1 = 0;
    while (l1 > 0 && a[l1 - 1] == a[p1]) {
        l1--;
    }
    int r2 = p2;
    while (r2 < n && a[r2] == a[p2]) {
        r2++;
    }

    if (a[p1] == a[p2]) {
        int cnt1 = p1 - l1 + 1;
        int cnt2 = r2 - p2;
        cout << choose(r2 - l1, cnt1 + cnt2) * choose(cnt1 + cnt2, cnt1) << '\n';
    } else {
        int r1 = p1;
        while (a[r1] == a[p1]) {
            r1++;
        }
        int l2 = p2;
        while (a[l2 - 1] == a[p2]) {
            l2--;
        }

        cout << choose(r1 - l1, p1 - l1 + 1) * choose(r2 - l2, r2 - p2) << '\n';
    }
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3760kb

input:

6 2
2 5 7 2 5 2

output:

8 6

result:

ok 2 number(s): "8 6"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

5 2
1 1 1 1 1

output:

0 15

result:

ok 2 number(s): "0 15"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3544kb

input:

2 1
1 1

output:

0 1

result:

ok 2 number(s): "0 1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3548kb

input:

2 1
1 2

output:

1 1

result:

ok 2 number(s): "1 1"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3724kb

input:

10 4
3 3 1 2 4 6 2 4 4 1

output:

12 1

result:

ok 2 number(s): "12 1"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

14 3
57 57 57 57 57 57 57 57 57 57 57 57 57 57

output:

0 30030

result:

ok 2 number(s): "0 30030"

Test #7:

score: -100
Wrong Answer
time: 0ms
memory: 3760kb

input:

13 5
858336 900782 858336 900782 900782 858336 900782 858336 858336 858336 858336 858336 52093

output:

976027 504

result:

wrong answer 2nd numbers differ - expected: '280', found: '504'