QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#842636 | #9968. Just Zeros | ucup-team087# | TL | 80ms | 4116kb | C++23 | 15.4kb | 2025-01-04 13:48:15 | 2025-01-04 13:48:16 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename UINT>
struct all_bit {
struct iter {
UINT s;
iter(UINT s) : s(s) {}
int operator*() const { return lowbit(s); }
iter &operator++() {
s &= s - 1;
return *this;
}
bool operator!=(const iter) const { return s != 0; }
};
UINT s;
all_bit(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename UINT>
struct all_subset {
static_assert(is_unsigned<UINT>::value);
struct iter {
UINT s, t;
bool ed;
iter(UINT s) : s(s), t(s), ed(0) {}
int operator*() const { return s ^ t; }
iter &operator++() {
(t == 0 ? ed = 1 : t = (t - 1) & s);
return *this;
}
bool operator!=(const iter) const { return !ed; }
};
UINT s;
all_subset(UINT s) : s(s) {}
iter begin() const { return iter(s); }
iter end() const { return iter(0); }
};
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); }
void TIDAK(bool t = 1) { YES(!t); }
#line 3 "main.cpp"
void solve() {
LL(H, N, Q);
vc<int> A(N);
FOR(i, H) {
STR(S);
FOR(j, N) {
if (S[j] == '1') A[j] |= 1 << i;
}
}
SHOW(A);
// 列集計
vc<int> F(1 << H);
FOR(j, N) { F[A[j]]++; }
SHOW(F);
// 行に対して行った操作の累積
ll row = 0;
auto RRR = [&]() -> void {
INT(i);
--i;
row ^= 1 << i;
};
auto PPP = [&]() -> void {
INT(i, j);
--i, --j;
F[A[j]]--;
A[j] ^= 1 << i;
F[A[j]]++;
};
auto KKK = [&]() -> void {
INT(j);
--j;
F[A[j]]--;
FOR(i, H) A[j] ^= 1 << i;
F[A[j]]++;
};
auto out = [&]() -> void {
ll ANS = infty<ll>;
FOR(r, 1 << H) {
ll cost = popcnt(r ^ row);
FOR(s, 1 << H) {
ll c1 = popcnt(s ^ r);
ll c2 = 1 + (H - c1);
cost += F[s] * min(c1, c2);
}
chmin(ANS, cost);
}
print(ANS);
};
out();
FOR(Q) {
CHAR(ch);
if (ch == 'R') RRR();
if (ch == 'P') PPP();
if (ch == 'K') KKK();
out();
}
}
signed main() { solve(); }
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3640kb
input:
3 4 6 1010 1101 0010 R 2 P 3 1 K 2 P 2 1 K 4 P 3 4
output:
3 2 3 4 3 3 4
result:
ok 7 numbers
Test #2:
score: 0
Accepted
time: 22ms
memory: 4116kb
input:
3 4 100000 0100 0011 0011 R 3 K 1 R 2 K 4 R 3 K 2 P 1 1 K 1 R 1 P 1 4 K 4 K 1 K 4 R 3 K 2 K 2 R 1 K 1 K 4 P 3 2 P 2 1 K 1 R 1 P 3 1 R 3 K 3 P 3 2 P 1 3 K 1 R 1 P 1 1 R 1 P 2 1 R 3 P 3 1 R 2 K 2 R 1 R 1 R 3 P 1 3 R 3 K 3 R 2 R 1 P 3 4 K 1 K 1 P 1 4 R 3 K 1 P 1 2 R 1 K 3 P 2 2 R 1 P 1 1 K 4 R 2 P 3 4 ...
output:
4 4 3 2 3 4 3 2 3 3 4 4 3 4 3 4 3 2 3 2 3 4 3 4 4 5 5 5 4 3 4 4 4 5 4 3 4 4 3 4 3 3 4 5 4 4 5 4 5 4 4 4 4 5 5 4 4 3 4 5 4 3 4 4 5 4 5 4 5 4 4 5 5 4 5 5 4 4 4 3 4 3 2 3 4 4 3 4 4 3 3 4 3 4 4 3 4 3 2 3 2 3 2 3 4 3 2 3 4 4 3 4 5 5 5 5 4 4 4 5 4 4 4 5 5 5 4 3 4 3 4 4 5 4 5 5 5 4 3 4 4 5 4 5 4 5 4 3 4 4 ...
result:
ok 100001 numbers
Test #3:
score: 0
Accepted
time: 80ms
memory: 3884kb
input:
4 3 100000 110 110 010 000 K 2 K 3 K 2 R 4 P 3 3 K 3 K 2 R 4 R 2 R 1 P 3 2 R 3 K 1 K 1 R 1 K 3 P 1 3 R 2 K 2 K 3 R 3 P 4 1 K 2 P 1 1 R 3 R 1 R 3 K 3 K 1 K 3 R 3 R 1 K 1 P 2 2 P 2 3 K 2 K 3 K 3 K 3 K 3 P 2 2 R 3 R 4 R 1 P 4 1 P 2 2 K 1 K 1 R 3 K 2 R 4 K 2 R 1 R 4 R 4 K 1 P 4 2 R 3 K 3 R 2 R 1 K 1 K 1...
output:
4 3 4 5 5 5 5 4 4 5 4 3 4 4 4 4 4 5 4 5 5 4 5 4 5 4 3 4 5 4 3 2 3 4 4 5 4 5 4 5 4 5 5 4 5 4 5 4 5 5 5 5 4 5 6 5 4 5 5 4 5 4 5 4 3 4 5 5 4 3 4 5 5 5 4 5 4 5 4 4 4 3 4 5 4 3 4 4 4 3 4 4 4 5 4 4 3 4 4 5 4 5 4 5 4 5 4 4 5 4 5 5 4 3 2 3 4 5 4 4 4 5 4 3 4 4 4 3 4 3 4 4 3 3 4 4 3 2 3 2 3 3 3 4 3 4 5 4 5 5 ...
result:
ok 100001 numbers
Test #4:
score: 0
Accepted
time: 1ms
memory: 3732kb
input:
1 1 10000 1 P 1 1 R 1 P 1 1 K 1 P 1 1 P 1 1 R 1 K 1 P 1 1 K 1 K 1 P 1 1 K 1 K 1 R 1 R 1 K 1 K 1 K 1 R 1 P 1 1 K 1 P 1 1 R 1 R 1 K 1 P 1 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1 R 1 P 1 1 P 1 1 R 1 K 1 P 1 1 R 1 R 1 R 1 K 1 P 1 1 P 1 1 P 1 1 R 1 R 1 P 1 1 R 1 K 1 R 1 P 1 1 R 1 K 1 R 1 P 1 1 R 1 P 1 1 K 1 R 1 R ...
output:
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...
result:
ok 10001 numbers
Test #5:
score: 0
Accepted
time: 8ms
memory: 3868kb
input:
2 2 100000 11 01 K 1 R 1 K 2 R 1 K 1 P 2 2 K 2 R 2 P 2 1 K 2 R 1 R 1 K 1 K 1 R 2 P 1 2 P 2 2 K 2 R 2 K 1 R 2 P 2 1 R 1 K 2 P 1 1 P 1 1 P 1 1 P 2 2 K 1 R 2 P 2 2 P 2 2 P 1 2 P 2 1 R 2 P 2 2 P 2 1 K 2 K 2 P 2 2 P 2 1 R 1 R 1 K 2 K 2 P 2 1 R 1 P 1 2 R 2 P 1 1 R 2 R 1 P 2 1 P 1 1 K 1 K 2 R 1 P 2 1 R 1 K...
output:
2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 1 1 1 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 2 2 2 2 2 2 1 2 1 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 2 1 1 2 1 2 1 1 1 0 1 1 1 1 2 2 1 2 1 2 2 1 0 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1 0 1 1 1 1 1 1 ...
result:
ok 100001 numbers
Test #6:
score: 0
Accepted
time: 20ms
memory: 3720kb
input:
8 100 100 1011100111011111110000100100100101000100111100011000001000101011001101001011010100110010110100010110 1001100100100101011101110000100001100001010100111011100111101000110011000010010001000010001101000001 0111000100001001100001111000111110100111100000010111100110110010110100000010011011100000...
output:
302 303 304 305 305 304 305 304 303 302 303 302 301 300 301 302 301 302 301 300 299 298 299 300 299 298 299 300 299 300 301 302 302 301 300 299 300 301 302 301 302 303 302 303 302 301 301 300 299 298 297 298 299 298 298 297 298 297 296 295 296 295 294 294 295 296 295 296 297 298 299 299 300 301 302 ...
result:
ok 101 numbers
Test #7:
score: 0
Accepted
time: 5ms
memory: 3716kb
input:
7 100 100 0110101100110100101101011011110110011011111111001001111111111110011000000110010000110001001100000000 1011011110010100111101010001101000100110011111110111000110111110000101000010001001110110101101100101 0010010101110110010111010010000111000101110101111110110010110011100001101001010001101011...
output:
275 275 275 274 273 274 274 275 274 274 273 274 275 275 275 275 275 275 274 273 274 273 272 271 270 269 270 271 272 271 272 271 270 269 270 269 268 267 268 269 270 271 270 269 268 269 270 269 270 271 272 273 274 273 272 271 270 269 268 267 268 267 268 267 268 267 268 269 270 269 268 269 268 267 266 ...
result:
ok 101 numbers
Test #8:
score: 0
Accepted
time: 2ms
memory: 3672kb
input:
6 100 100 1010111111000000010001111010011000101111101101010010001010100000000100001011010100001001101110110111 1100110100111000100000011001011111001010000011011011000011010100101110101110110000101001010110001011 0101000000000111000100010011100001001010011001010100110111010111111101001101010011101111...
output:
224 225 226 225 224 224 225 226 225 226 225 226 225 226 225 226 225 226 226 226 226 226 225 226 227 227 226 227 227 228 227 228 229 228 227 228 229 229 228 228 227 228 227 228 227 226 225 224 223 223 223 224 225 225 224 225 225 225 224 225 226 227 226 225 226 226 227 226 226 227 226 226 227 228 229 ...
result:
ok 101 numbers
Test #9:
score: 0
Accepted
time: 5ms
memory: 3884kb
input:
1 100 100000 0011100001111101100101010100101011111101000011001110000100000111100011000010010011011000010011100100 K 90 R 1 R 1 R 1 K 51 K 38 K 47 R 1 R 1 P 1 96 K 56 K 19 K 20 R 1 K 52 P 1 90 P 1 66 P 1 35 R 1 P 1 57 R 1 R 1 P 1 56 R 1 K 29 K 96 R 1 R 1 R 1 R 1 K 40 K 68 P 1 9 P 1 92 P 1 78 R 1 K 30...
output:
46 45 46 45 46 45 44 45 44 45 46 45 46 45 44 45 46 47 46 47 48 47 48 49 48 47 46 47 46 47 46 45 46 47 48 47 48 49 48 49 50 50 49 50 50 50 50 50 49 50 49 50 49 50 50 50 49 50 50 49 48 49 50 49 48 49 48 49 48 47 48 49 48 49 48 47 48 47 46 47 46 45 46 45 46 45 46 47 48 47 46 47 48 47 48 47 46 47 48 49 ...
result:
ok 100001 numbers
Test #10:
score: 0
Accepted
time: 8ms
memory: 3988kb
input:
2 100 100000 1010001101110111101111110111011110011110111110111110111010000110011111101100111001010011110001101110 0110010111101101111010000001001011101100110101000101100001011111100110010110010000110011001011000110 K 50 R 1 K 22 R 2 P 1 19 K 7 R 2 R 1 P 2 95 P 1 1 R 2 K 96 R 1 P 2 34 K 49 R 2 P 2 21...
output:
66 66 65 66 67 67 68 67 68 69 70 71 70 69 69 69 70 69 70 70 69 69 70 71 71 71 71 71 70 70 69 70 71 71 71 70 69 68 68 69 68 69 68 69 69 70 69 69 69 68 68 69 70 70 71 72 71 71 72 71 72 71 70 70 69 68 67 67 68 68 68 69 68 68 67 67 68 69 70 70 69 68 68 69 70 69 70 70 71 72 72 71 71 72 72 71 70 71 71 72 ...
result:
ok 100001 numbers
Test #11:
score: -100
Time Limit Exceeded
input:
8 100 100000 1011011101111011000001001110011100111000101001100010001110010100001010010110111001111010111100111100 0111101001110111101001010011011011001010100100111111110111110001010010011111011010010100001110111110 1111110111110010110110111110101111001001000011000000000011111011000100001011011101110...