QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#842535 | #9967. Imbalanced Teams | ucup-team5243# | AC ✓ | 1ms | 3900kb | C++23 | 29.9kb | 2025-01-04 13:21:26 | 2025-01-04 13:21:28 |
Judging History
answer
//line 1 "answer.cpp"
#if !__INCLUDE_LEVEL__
#include __FILE__
using mint = modint1000000007;
int main() {
ll n, k; input(n, k);
Combination<mint> c(n+1);
vl a(n); input(a);
sort(all(a));
if (a[0] == a[n-1]) {
mint ans = c(n, k) * c(n-k, k) / 2;
print(0, ans);
return 0;
}
map<ll,ll> cnt;
rep(i, n) cnt[a[i]]++;
ll diff = 0;
ll c1 = 0;
ll c2 = 0;
ll mx = 0;
ll mn = 0;
rep(i, k) {
diff -= a[i];
if (mx == a[i]) {
c1++;
} else{
c1 = 1;
mx = a[i];
}
diff += a[n-1-i];
if (mn == a[n-1-i]) {
c2++;
} else {
c2 = 1;
mn = a[n-1-i];
}
}
debug(mx, mn, c1, c2);
mint t;
if(mx != mn) t = c(cnt[mx], c1) * c(cnt[mn], c2);
else t = c(cnt[mx], c1) * c(cnt[mn] - c1, c2);
print(diff, t);
}
#else
//line 2 "/home/seekworser/.cpp_lib/competitive_library/competitive/std/std.hpp"
#include <bits/stdc++.h>
#ifndef LOCAL_TEST
#pragma GCC target ("avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#endif // LOCAL_TEST
using namespace std;
using std::cout;
// shorten typenames
using ll = long long;
using pii = pair<int, int>; using pll = pair<ll, ll>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
using vs = vector<string>; using vvs = vector<vector<string>>; using vvvs = vector<vector<vector<string>>>;
template<typename T> vector<vector<T>> vv(int h, int w, T val = T()) { return vector(h, vector<T>(w, val)); }
template<typename T> vector<vector<vector<T>>> vvv(int h1, int h2, int h3, T val = T()) { return vector(h1, vector(h2, vector<T>(h3, val))); }
template<typename T> vector<vector<vector<vector<T>>>> vvvv(int h1, int h2, int h3, int h4, T val = T()) { return vector(h1, vector(h2, vector(h3, vector<T>(h4, val)))); }
template <class T> using priority_queue_min = priority_queue<T, vector<T>, greater<T>>;
// define CONSTANTS
constexpr double PI = 3.14159265358979323;
constexpr int INF = 100100111; constexpr ll INFL = 3300300300300300491LL;
float EPS = 1e-8; double EPSL = 1e-10;
template<typename T> bool eq(const T x, const T y) { return x == y; }
template<> bool eq<double>(const double x, const double y) { return (abs(x - y) < EPSL * x || abs(x - y) < EPSL); }
template<> bool eq<float>(const float x, const float y) { return abs(x - y) < EPS * x; }
template<typename T> bool neq(const T x, const T y) { return !(eq<T>(x, y)); }
template<typename T> bool ge(const T x, const T y) { return (eq<T>(x, y) || (x > y)); }
template<typename T> bool le(const T x, const T y) { return (eq<T>(x, y) || (x < y)); }
template<typename T> bool gt(const T x, const T y) { return !(le<T>(x, y)); }
template<typename T> bool lt(const T x, const T y) { return !(ge<T>(x, y)); }
constexpr int MODINT998244353 = 998244353;
constexpr int MODINT1000000007 = 1000000007;
// fasten io
struct Nyan { Nyan() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } nyan;
// define macros
#define all(a) (a).begin(), (a).end()
#define sz(x) ((ll)(x).size())
#define rep1(n) for(ll dummy_iter = 0LL; dummy_iter < n; ++dummy_iter) // 0,1,...,n-1
#define rep2(i, n) for(ll i = 0LL, i##_counter = 0LL; i##_counter < ll(n); ++(i##_counter), (i) = i##_counter) // i=0,1,...,n-1
#define rep3(i, s, t) for(ll i = ll(s), i##_counter = ll(s); i##_counter < ll(t); ++(i##_counter), (i) = (i##_counter)) // i=s,s+1,...,t-1
#define rep4(i, s, t, step) for(ll i##_counter = step > 0 ? ll(s) : -ll(s), i##_end = step > 0 ? ll(t) : -ll(t), i##_step = abs(step), i = ll(s); i##_counter < i##_end; i##_counter += i##_step, i = step > 0 ? i##_counter : -i##_counter) // i=s,s+step,...,<t
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define repe(a, v) for(auto& a : (v)) // iterate over all elements in v
#define smod(n, m) ((((n) % (m)) + (m)) % (m))
#define sdiv(n, m) (((n) - smod(n, m)) / (m))
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());}
int Yes(bool b=true) { cout << (b ? "Yes\n" : "No\n"); return 0; };
int YES(bool b=true) { cout << (b ? "YES\n" : "NO\n"); return 0; };
int No(bool b=true) {return Yes(!b);};
int NO(bool b=true) {return YES(!b);};
template<typename T, size_t N> T max(array<T, N>& a) { return *max_element(all(a)); };
template<typename T, size_t N> T min(array<T, N>& a) { return *min_element(all(a)); };
template<typename T> T max(vector<T>& a) { return *max_element(all(a)); };
template<typename T> T min(vector<T>& a) { return *min_element(all(a)); };
template<typename T> vector<T> vec_slice(const vector<T>& a, int l, int r) { vector<T> rev; rep(i, l, r) rev.push_back(a[i]); return rev; };
template<typename T> T sum(vector<T>& a, T zero = T(0)) { T rev = zero; rep(i, sz(a)) rev += a[i]; return rev; };
template<typename T> bool in_range(const T& val, const T& s, const T& t) { return s <= val && val < t; };
template <class T> inline vector<T>& operator--(vector<T>& v) { repe(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repe(x, v) ++x; return v; }
ll powm(ll a, ll n, ll mod=INFL) {
ll res = 1;
while (n > 0) {
if (n & 1) res = (res * a) % mod;
if (n > 1) a = (a * a) % mod;
n >>= 1;
}
return res;
}
ll sqrtll(ll x) {
assert(x >= 0);
ll rev = sqrt(x);
while(rev * rev > x) --rev;
while((rev+1) * (rev+1)<=x) ++rev;
return rev;
}
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; }
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; }
int digit(ll x, int d=10) { int rev=0; while (x > 0) { rev++; x /= d;}; return rev; }
/**
* @brief std.hpp
* @docs docs/std/std.md
*/
//line 4 "/home/seekworser/.cpp_lib/competitive_library/atcoder/modint.hpp"
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
//line 3 "/home/seekworser/.cpp_lib/competitive_library/atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
//line 5 "/home/seekworser/.cpp_lib/competitive_library/atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
//line 12 "/home/seekworser/.cpp_lib/competitive_library/atcoder/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint& operator=(const mint& rhs) { (*this)._v = rhs.val(); return *this; }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint& operator=(const mint& rhs) { (*this)._v = rhs.val(); return *this; }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
//line 4 "/home/seekworser/.cpp_lib/competitive_library/competitive/math/modint.hpp"
namespace modint_internal {
template<typename Mint> Mint pow(Mint a, ll n) {
Mint res = 1;
while (n > 0) {
if (n & 1) res *= a;
if (n > 1) a *= a;
n >>= 1;
}
return res;
}
template<typename Mint> inline istream& input(istream& is, Mint& x) {ll a; is >> a; x = a; return is; }
template<typename Mint> inline ostream& print(ostream& os, const Mint& x) { os << x.val(); return os; }
}
inline istream& operator>>(istream& is, atcoder::modint& x) { return modint_internal::input(is, x); }
template<int m> inline istream& operator>>(istream& is, atcoder::static_modint<m>& x) { return modint_internal::input(is, x); }
inline ostream& operator<<(ostream& os, const atcoder::modint& x) { return modint_internal::print(os, x); }
template<int m> inline ostream& operator<<(ostream& os, const atcoder::static_modint<m>& x) { return modint_internal::print(os, x); }
atcoder::modint pow(atcoder::modint a, ll n) { return modint_internal::pow(a, n); }
template<int m> atcoder::static_modint<m> pow(atcoder::static_modint<m> a, ll n) { return modint_internal::pow(a, n); }
using modint998244353 = atcoder::modint998244353;
using modint1000000007 = atcoder::modint1000000007;
using modint = atcoder::modint;
/**
* @brief modint.hpp
* @docs docs/math/modint.md
*/
//line 4 "/home/seekworser/.cpp_lib/competitive_library/competitive/math/combination.hpp"
template<typename mint> struct Combination {
vector<mint> fact, fact_inv;
Combination(int nmax) : fact(nmax+1), fact_inv(nmax+1) {
int p = mint::mod();
vector<mint> inv(nmax+1);
fact[0] = fact[1] = 1;
fact_inv[0] = fact_inv[1] = 1;
inv[0] = 0;
inv[1] = 1;
for (int i = 2; i < nmax+1; i++) {
fact[i] = fact[i - 1] * i;
inv[i] = p - inv[p % i] * (p / i);
fact_inv[i] = fact_inv[i - 1] * inv[i];
}
}
mint operator()(int n, int r) {
if (r < 0 || n < r) return 0;
return fact[n] * fact_inv[r] * fact_inv[n - r];
}
};
/**
* @brief combination.hpp
* @docs docs/math/combination.md
*/
//line 3 "/home/seekworser/.cpp_lib/competitive_library/competitive/std/io.hpp"
// overload operators (prototypes)
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p);
template <class T> inline istream& operator>>(istream& is, vector<T>& v);
template <class T, class U> inline ostream& operator<<(ostream& os, const pair<T, U>& p);
template <class T> inline ostream& operator<<(ostream& os, const vector<T>& v);
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp);
template <typename T> ostream &operator<<(ostream &os, const set<T> &st);
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st);
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &st);
template <typename T> ostream &operator<<(ostream &os, queue<T> q);
template <typename T> ostream &operator<<(ostream &os, deque<T> q);
template <typename T> ostream &operator<<(ostream &os, stack<T> st);
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq);
// overload operators
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repe(x, v) is >> x; return is; }
template <class T, class U> inline ostream& operator<<(ostream& os, const pair<T, U>& p) { os << p.first << " " << p.second; return os; }
template <class T> inline ostream& operator<<(ostream& os, const vector<T>& v) { rep(i, sz(v)) { os << v.at(i); if (i != sz(v) - 1) os << " "; } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp) { for (auto &[key, val] : mp) { os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st) { auto itr = st.begin(); for (int i = 0; i < (int)st.size(); i++) { os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st) { auto itr = st.begin(); for (int i = 0; i < (int)st.size(); i++) { os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &st) { ll cnt = 0; for (auto &e : st) { os << e << (++cnt != (int)st.size() ? " " : ""); } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q) { while (q.size()) { os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q) { while (q.size()) { os << q.front(); q.pop_front(); if (q.size()) os << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st) { while (st.size()) { os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq) { while (pq.size()) { os << pq.top() << " "; pq.pop(); } return os; }
template <typename T> int print_sep_end(string sep, string end, const T& val) { (void)sep; cout << val << end; return 0; };
template <typename T1, typename... T2> int print_sep_end(string sep, string end, const T1 &val, const T2 &...remain) {
cout << val << sep;
print_sep_end(sep, end, remain...);
return 0;
};
template <typename... T> int print(const T &...args) { print_sep_end(" ", "\n", args...); return 0; };
template <typename... T> void flush() { cout << flush; };
template <typename... T> int print_and_flush(const T &...args) { print(args...); flush(); return 0; };
#define debug(...) debug_func(0, #__VA_ARGS__, __VA_ARGS__) // debug print
template <typename T> void input(T &a) { cin >> a; };
template <typename T1, typename... T2> void input(T1&a, T2 &...b) { cin >> a; input(b...); };
#ifdef LOCAL_TEST
template <typename T> void debug_func(int i, const T name) { (void)i; (void)name; cerr << endl; }
template <typename T1, typename T2, typename... T3> void debug_func(int i, const T1 &name, const T2 &a, const T3 &...b) {
int scope = 0;
for ( ; (scope != 0 || name[i] != ',') && name[i] != '\0'; i++ ) {
cerr << name[i];
if (name[i] == '(' || name[i] == '{') scope++;
if (name[i] == ')' || name[i] == '}') scope--;
}
cerr << ":" << a << " ";
debug_func(i + 1, name, b...);
}
template <typename T1, typename T2, typename... T3> void debug_func(int i, const T1 &name, T2 &a, T3 &...b) {
int scope = 0;
for ( ; (scope != 0 || name[i] != ',') && name[i] != '\0'; i++ ) {
cerr << name[i];
if (name[i] == '(' || name[i] == '{') scope++;
if (name[i] == ')' || name[i] == '}') scope--;
}
cerr << ":" << a << " ";
debug_func(i + 1, name, b...);
}
#endif
#ifndef LOCAL_TEST
template <typename... T>
void debug_func(T &...) {}
template <typename... T>
void debug_func(const T &...) {}
#endif
/**
* @brief io.hpp
* @docs docs/std/io.md
*/
//line 48 "answer.cpp"
#endif
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3636kb
input:
6 2 2 5 7 2 5 2
output:
8 6
result:
ok 2 number(s): "8 6"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
5 2 1 1 1 1 1
output:
0 15
result:
ok 2 number(s): "0 15"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3632kb
input:
2 1 1 1
output:
0 1
result:
ok 2 number(s): "0 1"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
2 1 1 2
output:
1 1
result:
ok 2 number(s): "1 1"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3632kb
input:
10 4 3 3 1 2 4 6 2 4 4 1
output:
12 1
result:
ok 2 number(s): "12 1"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3780kb
input:
14 3 57 57 57 57 57 57 57 57 57 57 57 57 57 57
output:
0 30030
result:
ok 2 number(s): "0 30030"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3548kb
input:
13 5 858336 900782 858336 900782 900782 858336 900782 858336 858336 858336 858336 858336 52093
output:
976027 280
result:
ok 2 number(s): "976027 280"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3464kb
input:
14 4 447923 447923 447923 211106 447923 447923 447923 447923 16966 447923 211106 515550 211106 211106
output:
1209035 224
result:
ok 2 number(s): "1209035 224"
Test #9:
score: 0
Accepted
time: 1ms
memory: 3704kb
input:
2000 935 57596 988638 30477 956599 52986 460052 987863 291984 947848 109335 541003 338365 939256 297365 926486 944912 700042 810595 412192 37130 343207 311311 681629 48155 319677 435667 731251 919378 254216 893282 661237 740159 787502 501360 517533 349880 565298 536545 192793 18666 425164 856977 536...
output:
493241703 1
result:
ok 2 number(s): "493241703 1"
Test #10:
score: 0
Accepted
time: 1ms
memory: 3812kb
input:
2000 1000 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101493 101...
output:
0 36237869
result:
ok 2 number(s): "0 36237869"
Test #11:
score: 0
Accepted
time: 1ms
memory: 3616kb
input:
2000 1000 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834985 834...
output:
95671357 1001
result:
ok 2 number(s): "95671357 1001"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3696kb
input:
2000 1000 999763 998795 997229 996607 995585 995585 995080 995080 995080 994251 994251 994251 994169 994158 994051 993410 993410 993410 993410 993410 993410 993410 993410 992448 992314 992176 990170 989664 989638 987205 987205 987205 987205 987205 987205 987067 986997 986233 985924 985707 985180 985...
output:
85351652 417058531
result:
ok 2 number(s): "85351652 417058531"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3880kb
input:
2000 1000 220336 697950 570674 245907 697950 409648 697950 245907 697950 245907 245907 245907 496369 697950 697950 697950 245907 435446 697950 245907 697950 245907 697950 317643 245907 245907 697950 697950 697950 245907 697950 697950 697950 697950 697950 220336 412219 697950 245907 245907 697950 697...
output:
406826343 1001
result:
ok 2 number(s): "406826343 1001"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3672kb
input:
2000 1000 824739 824739 511894 511894 511894 824739 824739 511894 511894 511894 511894 511894 824739 511894 422607 824739 824739 824739 511894 824739 824739 824739 824739 824739 511894 824739 824739 824739 824739 824739 824739 511894 511894 824739 511894 824739 511894 824739 511894 824739 511894 824...
output:
312778791 2
result:
ok 2 number(s): "312778791 2"
Test #15:
score: 0
Accepted
time: 1ms
memory: 3816kb
input:
2000 1000 963877 389725 389725 389725 278964 278964 389725 963877 278964 234531 389725 278964 963877 963877 234531 963877 389725 963877 963877 278964 123625 234531 278964 389725 389725 963877 963877 389725 389725 278964 123625 389725 389725 963877 963877 389725 278964 963877 278964 234531 278964 389...
output:
402934678 571
result:
ok 2 number(s): "402934678 571"
Test #16:
score: 0
Accepted
time: 1ms
memory: 3584kb
input:
2000 1000 810623 810623 215961 213971 72125 810623 810623 810623 456356 376932 739377 810623 810623 810623 810623 724747 810623 810623 810623 445139 417445 487074 810623 810623 115166 810623 810623 810623 810623 156975 682791 810623 810623 502268 810623 810623 148063 697295 810623 617315 187980 8106...
output:
336729651 864576772
result:
ok 2 number(s): "336729651 864576772"
Test #17:
score: 0
Accepted
time: 1ms
memory: 3556kb
input:
2000 1000 15252 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 138241 1382...
output:
530383255 379
result:
ok 2 number(s): "530383255 379"
Test #18:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
2000 1000 68512 68512 68512 68512 68512 68512 68512 68512 68512 68512 415790 68512 415790 68512 68512 68512 415790 68512 584278 68512 415790 68512 68512 68512 68512 352649 68512 68512 68512 68512 68512 68512 68512 68512 68512 68512 68512 68512 68512 15848 68512 415790 415790 68512 68512 68512 68512 ...
output:
197366653 946019815
result:
ok 2 number(s): "197366653 946019815"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3744kb
input:
1996 35 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 231100 23110...
output:
0 732363067
result:
ok 2 number(s): "0 732363067"
Test #20:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
1996 693 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 129742 1297...
output:
310512311 144403077
result:
ok 2 number(s): "310512311 144403077"
Test #21:
score: 0
Accepted
time: 1ms
memory: 3744kb
input:
1995 100 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 502532 5025...
output:
6099485 530384736
result:
ok 2 number(s): "6099485 530384736"
Test #22:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
2000 702 689650 689650 689650 689650 689650 257789 689650 257789 689650 689650 689650 649096 689650 689650 64913 649096 257789 689650 689650 689650 479477 537847 689650 689650 689650 689650 689650 689650 257789 689650 689650 689650 689650 689650 649096 689650 689650 257789 689650 257789 649096 25778...
output:
167362101 606588929
result:
ok 2 number(s): "167362101 606588929"
Test #23:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
2000 511 434117 434117 167194 167194 167194 320034 167194 138620 57474 57474 434117 167194 167194 167194 167194 57474 57474 434117 167194 167194 57474 167194 57474 57474 57474 434117 167194 434117 167194 57474 57474 57474 434117 434117 167194 434117 167194 167194 167194 57474 167194 434117 209273 16...
output:
211514717 959420
result:
ok 2 number(s): "211514717 959420"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
1999 244 336742 336742 336742 163948 336742 336742 163948 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 163948 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 336742 3367...
output:
52218989 449117049
result:
ok 2 number(s): "52218989 449117049"
Test #25:
score: 0
Accepted
time: 1ms
memory: 3684kb
input:
2000 901 41873 329018 329018 2744 329018 329018 329018 329018 2744 329018 41873 228136 269177 2744 329018 329018 329018 329018 75126 329018 15348 329018 329018 329018 329018 329018 329018 329018 238309 329018 92708 329018 329018 308134 329018 124989 329018 329018 329018 104062 329018 329018 329018 3...
output:
116724056 279087270
result:
ok 2 number(s): "116724056 279087270"
Test #26:
score: 0
Accepted
time: 0ms
memory: 3624kb
input:
1996 1 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037 10037...
output:
0 1991010
result:
ok 2 number(s): "0 1991010"
Test #27:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
1999 206 655647 655647 655647 655647 696220 655647 655647 655647 655647 655647 655647 655647 696220 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 655647 696220 655647 655647 655647 655647 655647 655647 655647 696220 655647 655647 655647 6556...
output:
13077003 122255271
result:
ok 2 number(s): "13077003 122255271"
Test #28:
score: 0
Accepted
time: 1ms
memory: 3832kb
input:
1993 541 612935 636811 644833 645310 612935 648500 631295 644535 633495 612935 612935 612935 612935 612935 648500 648500 645324 612935 648500 612935 612935 648500 612935 612935 612935 612935 612935 612935 648500 622150 627296 612935 629349 648500 612935 625984 612935 612935 648500 612935 648500 6129...
output:
19240665 608611794
result:
ok 2 number(s): "19240665 608611794"
Test #29:
score: 0
Accepted
time: 1ms
memory: 3564kb
input:
2000 221 241380 241380 374457 241380 241380 241380 696478 696478 241380 241380 409314 483710 696478 696478 696478 696478 696478 696478 241380 241380 872000 241380 696478 291014 782435 241380 241380 803240 696478 241380 241380 241380 696478 696478 696478 696478 241380 696478 241380 844283 241380 2413...
output:
131361754 473559136
result:
ok 2 number(s): "131361754 473559136"
Test #30:
score: 0
Accepted
time: 1ms
memory: 3896kb
input:
1993 343 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 555330 5553...
output:
54777558 519900873
result:
ok 2 number(s): "54777558 519900873"
Test #31:
score: 0
Accepted
time: 1ms
memory: 3548kb
input:
2000 186 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 700789 7007...
output:
87151818 928211245
result:
ok 2 number(s): "87151818 928211245"
Test #32:
score: 0
Accepted
time: 1ms
memory: 3816kb
input:
1993 700 623894 623894 475133 860406 203186 623894 774169 774169 774169 475133 623894 774169 748033 203186 475133 623894 748033 623894 475133 774169 774169 774169 475133 623894 623894 203186 623894 203186 623894 475133 718749 774169 623894 623894 774169 203186 774169 203186 774169 748033 475133 7480...
output:
287280090 53244
result:
ok 2 number(s): "287280090 53244"
Test #33:
score: 0
Accepted
time: 1ms
memory: 3612kb
input:
1995 728 779764 848766 734106 779764 763683 779764 665277 285893 779764 875055 304657 285893 779764 779764 285893 779764 779764 779764 779764 779764 779764 779764 779764 285893 285893 285893 665277 665277 779764 779764 285893 831705 285893 704495 779764 285893 779764 285893 285893 779764 779764 2858...
output:
371726887 775274252
result:
ok 2 number(s): "371726887 775274252"
Test #34:
score: 0
Accepted
time: 1ms
memory: 3660kb
input:
1997 927 572674 572674 280099 572674 36250 122992 572674 191914 8661 217131 572674 572674 572674 572674 419716 572674 572674 572674 572674 572674 217131 572674 572674 572674 166486 572674 419716 572674 382507 419716 419716 572674 572674 572674 280099 379194 157092 572674 572674 280099 177228 163710 ...
output:
286636084 843948387
result:
ok 2 number(s): "286636084 843948387"
Test #35:
score: 0
Accepted
time: 1ms
memory: 3672kb
input:
1993 481 999693 999693 999693 999693 999693 998210 996510 995423 995089 992358 992245 992108 992108 992108 991703 991093 990890 990644 987894 987134 986842 986604 985668 982039 981525 980612 980210 977300 975707 974624 973748 971733 969680 969653 968686 968317 967738 966197 965257 965257 965257 9637...
output:
298749808 869915276
result:
ok 2 number(s): "298749808 869915276"
Test #36:
score: 0
Accepted
time: 1ms
memory: 3664kb
input:
2000 630 952180 748007 219118 456547 952180 952180 767878 952180 767878 575470 285503 952180 748007 952180 952180 952180 575470 952180 575470 952180 952180 767878 743577 748007 952180 720943 575470 720943 952180 575470 952180 720943 720943 767878 952180 575470 743577 952180 456547 720943 720943 7512...
output:
227697048 401900157
result:
ok 2 number(s): "227697048 401900157"
Test #37:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
2000 393 890592 766981 890592 766981 766981 766981 895851 890592 895851 895851 890592 895851 895851 895851 890592 895851 890592 766981 895851 895851 890592 895851 895851 890592 890592 766981 895851 890592 895851 890592 895851 890592 890592 895851 890592 890592 766981 766981 895851 890592 895851 8905...
output:
50645910 693975258
result:
ok 2 number(s): "50645910 693975258"
Test #38:
score: 0
Accepted
time: 1ms
memory: 3824kb
input:
2000 457 563252 559847 574717 786906 559642 567124 567124 559642 565972 567124 564102 564102 565972 559642 566763 567124 559642 786906 786906 563484 567068 565585 786906 567124 566346 786906 559642 574562 563771 570825 561969 567124 559642 561584 565299 786906 559642 567124 569807 786906 567124 5596...
output:
103647459 42
result:
ok 2 number(s): "103647459 42"
Test #39:
score: 0
Accepted
time: 1ms
memory: 3680kb
input:
1993 656 67937 615218 615218 615218 67937 615218 67937 615218 615218 67937 615218 615218 67937 67937 67937 67937 67937 67937 615218 615218 615218 67937 615218 67937 615218 67937 615218 67937 615218 615218 615218 615218 995043 615218 67937 615218 615218 800075 615218 615218 615218 615218 615218 61996...
output:
391629438 462660524
result:
ok 2 number(s): "391629438 462660524"
Test #40:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
1997 672 384143 384143 384143 243847 82873 22254 384143 384143 50289 384143 384143 203333 22254 384143 22254 70690 384143 22254 22254 15572 384143 214927 384143 384143 384143 22254 384143 384143 243847 22254 243847 384143 384143 243847 231381 384143 22254 384143 384143 384143 384143 384143 384143 38...
output:
192781988 95854834
result:
ok 2 number(s): "192781988 95854834"
Test #41:
score: 0
Accepted
time: 1ms
memory: 3676kb
input:
2000 130 209374 209374 209374 209374 86362 582751 582751 209374 209374 209374 86362 86362 86362 86362 209374 209374 209374 209374 209374 209374 582751 209374 86362 86362 86362 582751 86362 209374 209374 86362 86362 209374 582751 209374 86362 209374 86362 209374 86362 86362 86362 209374 86362 209374 ...
output:
76833050 758641
result:
ok 2 number(s): "76833050 758641"
Test #42:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
2000 599 228240 228240 228240 923209 228240 228240 228240 683802 683802 923209 933811 228240 228240 725189 228240 50313 923209 683802 923209 228240 220967 228240 100049 228240 923209 228240 923209 35821 228240 100049 923209 228240 683802 228240 100049 767142 923209 100049 228240 228240 923209 923209...
output:
464181375 520932862
result:
ok 2 number(s): "464181375 520932862"
Test #43:
score: 0
Accepted
time: 1ms
memory: 3680kb
input:
2000 277 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 625218 6252...
output:
108979111 667720737
result:
ok 2 number(s): "108979111 667720737"
Test #44:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
2000 867 996789 996789 996789 996789 996789 975515 975515 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 916091 9160...
output:
589665604 58726973
result:
ok 2 number(s): "589665604 58726973"
Test #45:
score: 0
Accepted
time: 1ms
memory: 3900kb
input:
2000 689 572959 238918 130497 610749 682013 130497 130497 508058 190574 238918 4212 567691 130497 190574 508058 699431 238918 729711 130497 572959 130497 190574 885298 130497 834864 115509 130497 572959 148961 130497 737395 130497 190574 190574 572959 130497 190574 543101 875404 737395 130497 572959...
output:
383970121 87447683
result:
ok 2 number(s): "383970121 87447683"
Test #46:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
2000 1000 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 403945 816114 816114 816114 816114 816114 816114 816114 883810 911598 911598 911598 911598 972174 972174 972174 972174 972174 972174 972...
output:
19500102 1
result:
ok 2 number(s): "19500102 1"
Test #47:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
2000 1 1000000 1 1000000 1 1 1 1 1 1 1 1 1 1 1 1000000 1 1 1000000 1 1 1 1 1000000 1 1000000 1000000 1000000 1000000 1 1 1000000 1000000 1 1000000 1000000 1000000 1000000 1000000 1000000 1 1000000 1 1 1 1 1 1 1000000 1 1 1000000 1000000 1 1000000 1 1 1000000 1000000 1 1000000 1 1 1000000 1 1000000 1...
output:
999999 1000000
result:
ok 2 number(s): "999999 1000000"
Test #48:
score: 0
Accepted
time: 1ms
memory: 3584kb
input:
2000 57 1 1 1 1000000 1000000 1000000 1000000 1 1 1000000 1000000 1 1000000 1 1000000 1000000 1000000 1000000 1 1 1 1000000 1 1 1000000 1 1000000 1000000 1 1000000 1 1 1 1 1000000 1 1 1000000 1000000 1000000 1000000 1 1000000 1 1 1 1 1 1 1 1 1 1 1000000 1 1000000 1000000 1000000 1 1000000 1 1000000 ...
output:
56999943 264036312
result:
ok 2 number(s): "56999943 264036312"
Test #49:
score: 0
Accepted
time: 0ms
memory: 3596kb
input:
2000 1000 1 1000000 1000000 1 1 1000000 1 1 1 1 1000000 1000000 1 1 1000000 1 1000000 1000000 1000000 1000000 1 1000000 1000000 1 1 1 1 1 1000000 1 1 1 1000000 1 1000000 1 1000000 1000000 1 1 1 1 1 1000000 1000000 1000000 1 1000000 1 1 1000000 1 1000000 1000000 1 1 1 1000000 1000000 1 1000000 1 1 1 ...
output:
999999000 1
result:
ok 2 number(s): "999999000 1"
Test #50:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
2000 1 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000...
output:
0 1999000
result:
ok 2 number(s): "0 1999000"
Test #51:
score: 0
Accepted
time: 0ms
memory: 3888kb
input:
2000 124 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 100...
output:
0 960369567
result:
ok 2 number(s): "0 960369567"
Test #52:
score: 0
Accepted
time: 0ms
memory: 3748kb
input:
2000 1000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10...
output:
0 36237869
result:
ok 2 number(s): "0 36237869"
Test #53:
score: 0
Accepted
time: 0ms
memory: 3604kb
input:
1998 666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
1332 651667502
result:
ok 2 number(s): "1332 651667502"
Test #54:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
1998 666 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...
output:
1332 651667502
result:
ok 2 number(s): "1332 651667502"
Extra Test:
score: 0
Extra Test Passed