QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#829113#8728. Tablicafractal100 ✓75ms123772kbC++174.5kb2024-12-24 03:04:362024-12-24 03:04:37

Judging History

你现在查看的是最新测评结果

  • [2024-12-24 03:04:37]
  • 评测
  • 测评结果:100
  • 用时:75ms
  • 内存:123772kb
  • [2024-12-24 03:04:36]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

#define F first
#define S second 
#define sz(x) (int)x.size()
#define all(x) x.begin(), x.end()
#define make_unique(x) sort(all(x)), x.erase(unique(all(x)), x.end())

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 Rng(chrono::steady_clock::now().time_since_epoch().count());

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;

const int N = 3e3 + 200;
const int M = 1e6;
const int inf = 2e9 + 3;
const ll INF = 1e18;

template<int mod>
class Modular {
public:
    int val;
    Modular() : val(0) {}
    Modular(int new_val) : val(new_val) {}
    // Modular(long long new_val) : val(new_val % mod) {}  // AFFECTS OPERATOR* (because it has one more %)
    friend Modular operator+(const Modular& a, const Modular& b) {
        if (a.val + b.val >= mod) return a.val + b.val - mod;
        else return a.val + b.val;
    }
    friend Modular operator-(const Modular& a, const Modular& b) {
        if (a.val - b.val < 0) return a.val - b.val + mod;
        else return a.val - b.val;
    }
    friend Modular operator*(const Modular& a, const Modular& b) {
        return 1ll * a.val * b.val % mod;
    }
    friend Modular binpow(Modular a, long long n) {
        Modular res = 1;
        for (; n; n >>= 1) {
            if (n & 1) res *= a;
            a *= a;
        }
        return res;
    }
    /*
    friend Modular inv(const Modular& a) {
        Modular x, y;
        gcd(a.val, mod, x, y);
        return x;
    }
    */
    friend Modular inv(const Modular& a) {
        return binpow(a, mod - 2);
    }
    friend Modular operator^(const Modular& a, const long long& b) {
        if (b >= 0)
            return binpow(a, b % (mod - 1));
        return binpow(inv(a), (-b) % (mod - 1));
    }
    /* ALTERNATIVE INVERSE FUNCTION USING EXTENDED EUCLIDEAN ALGORITHM
    friend void gcd(int a, int b, Modular& x, Modular& y) {
        if (a == 0) {
            x = Modular(0);
            y = Modular(1);
            return;
        }
        Modular x1, y1;
        gcd(b % a, a, x1, y1);
        x = y1 - (b / a) * x1;
        y = x1;
    }
    */
    Modular operator/(const Modular& ot) const {
        return *this * inv(ot);
    }
    Modular& operator++() {
        if (val + 1 == mod) val = 0;
        else ++val;
        return *this;
    }
    Modular operator++(int) {
        Modular tmp = *this;
        ++(*this);
        return tmp;
    }
    Modular operator+() const {
        return *this;
    }
    Modular operator-() const {
        return 0 - *this;
    }
    Modular& operator+=(const Modular& ot) {
        return *this = *this + ot;
    }
    Modular& operator-=(const Modular& ot) {
        return *this = *this - ot;
    }
    Modular& operator*=(const Modular& ot) {
        return *this = *this * ot;
    }
    Modular& operator/=(const Modular& ot) {
        return *this = *this / ot;
    }
    bool operator==(const Modular& ot) const {
        return val == ot.val;
    }
    bool operator!=(const Modular& ot) const {
        return val != ot.val;
    }
    bool operator<(const Modular& ot) const {
        return val < ot.val;
    }
    bool operator>(const Modular& ot) const {
        return val > ot.val;
    }
    explicit operator int() const {
        return val;
    }
};
 
template<int mod>
istream& operator>>(istream& istr, Modular<mod>& x) {
    return istr >> x.val;
}
 
template<int mod>
ostream& operator<<(ostream& ostr, const Modular<mod>& x) {
    return ostr << x.val;
}
 
const int mod = 1e9 + 7;
using Mint = Modular<mod>;

int a, b;
Mint g[N][N], P[N][N], G[N][N];

int main() {
    cin.tie(0)->sync_with_stdio(0);
    g[0][0] = 1;
    P[0][0] = 1;
    G[0][0] = 1;
    cin >> a >> b;
    for (int n = 1; n <= a; ++n) {
        Mint ii2 = Mint(1)/2;
        Mint iin = Mint(1)/n;
        for (int m = 1; m <= b; ++m) {
            if (n >= 2) g[n][m] += P[n-2][m-1] + G[n-2][m-1];
            if (m >= 2) g[n][m] += P[n-1][m-2];
            if (n >= 2 && m >= 2) g[n][m] += G[n-2][m-2];
            g[n][m] *= ii2;
            g[n][m] += P[n-1][m-1];
            g[n][m] *= iin;
            G[n][m] = G[n-1][m-1] + g[n][m];
            P[n][m] = P[n-1][m-1] + G[n][m];
        }
    }
    Mint ans = g[a][b];
    for (int i = 1; i <= a; ++i) ans = ans * i;
    for (int i = 1; i <= b; ++i) ans = ans * i;
    cout << ans << '\n';
}

详细

Subtask #1:

score: 10
Accepted

Test #1:

score: 10
Accepted
time: 12ms
memory: 123644kb

input:

5 6

output:

456750

result:

ok 1 number(s): "456750"

Test #2:

score: 10
Accepted
time: 8ms
memory: 123772kb

input:

6 6

output:

5464710

result:

ok 1 number(s): "5464710"

Test #3:

score: 10
Accepted
time: 3ms
memory: 123768kb

input:

3 5

output:

270

result:

ok 1 number(s): "270"

Test #4:

score: 10
Accepted
time: 0ms
memory: 123640kb

input:

3 6

output:

90

result:

ok 1 number(s): "90"

Test #5:

score: 10
Accepted
time: 0ms
memory: 123644kb

input:

4 6

output:

14580

result:

ok 1 number(s): "14580"

Test #6:

score: 10
Accepted
time: 12ms
memory: 123652kb

input:

3 4

output:

270

result:

ok 1 number(s): "270"

Subtask #2:

score: 18
Accepted

Dependency #1:

100%
Accepted

Test #7:

score: 18
Accepted
time: 8ms
memory: 123612kb

input:

50 49

output:

750700714

result:

ok 1 number(s): "750700714"

Test #8:

score: 18
Accepted
time: 3ms
memory: 123704kb

input:

50 50

output:

630532893

result:

ok 1 number(s): "630532893"

Test #9:

score: 18
Accepted
time: 7ms
memory: 123720kb

input:

41 34

output:

800856205

result:

ok 1 number(s): "800856205"

Test #10:

score: 18
Accepted
time: 7ms
memory: 123624kb

input:

39 41

output:

541550932

result:

ok 1 number(s): "541550932"

Test #11:

score: 18
Accepted
time: 4ms
memory: 123644kb

input:

38 46

output:

651393374

result:

ok 1 number(s): "651393374"

Test #12:

score: 18
Accepted
time: 0ms
memory: 123644kb

input:

37 39

output:

746919932

result:

ok 1 number(s): "746919932"

Test #13:

score: 18
Accepted
time: 8ms
memory: 123716kb

input:

30 50

output:

214086425

result:

ok 1 number(s): "214086425"

Test #14:

score: 18
Accepted
time: 8ms
memory: 123648kb

input:

50 41

output:

193351204

result:

ok 1 number(s): "193351204"

Test #15:

score: 18
Accepted
time: 3ms
memory: 123704kb

input:

44 32

output:

63855946

result:

ok 1 number(s): "63855946"

Test #16:

score: 18
Accepted
time: 16ms
memory: 123768kb

input:

45 42

output:

266239299

result:

ok 1 number(s): "266239299"

Subtask #3:

score: 31
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Test #17:

score: 31
Accepted
time: 0ms
memory: 123704kb

input:

199 200

output:

841552647

result:

ok 1 number(s): "841552647"

Test #18:

score: 31
Accepted
time: 0ms
memory: 123588kb

input:

200 200

output:

157842226

result:

ok 1 number(s): "157842226"

Test #19:

score: 31
Accepted
time: 7ms
memory: 123724kb

input:

156 199

output:

216453917

result:

ok 1 number(s): "216453917"

Test #20:

score: 31
Accepted
time: 3ms
memory: 123576kb

input:

161 199

output:

539960909

result:

ok 1 number(s): "539960909"

Test #21:

score: 31
Accepted
time: 3ms
memory: 123572kb

input:

194 160

output:

764024671

result:

ok 1 number(s): "764024671"

Test #22:

score: 31
Accepted
time: 7ms
memory: 123640kb

input:

184 195

output:

117763744

result:

ok 1 number(s): "117763744"

Test #23:

score: 31
Accepted
time: 4ms
memory: 123624kb

input:

152 174

output:

350941677

result:

ok 1 number(s): "350941677"

Test #24:

score: 31
Accepted
time: 3ms
memory: 123640kb

input:

195 186

output:

130526660

result:

ok 1 number(s): "130526660"

Test #25:

score: 31
Accepted
time: 3ms
memory: 123704kb

input:

173 159

output:

754934766

result:

ok 1 number(s): "754934766"

Test #26:

score: 31
Accepted
time: 3ms
memory: 123584kb

input:

194 170

output:

956364877

result:

ok 1 number(s): "956364877"

Subtask #4:

score: 41
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Test #27:

score: 41
Accepted
time: 75ms
memory: 123644kb

input:

3000 2999

output:

5195706

result:

ok 1 number(s): "5195706"

Test #28:

score: 41
Accepted
time: 75ms
memory: 123720kb

input:

3000 3000

output:

224347336

result:

ok 1 number(s): "224347336"

Test #29:

score: 41
Accepted
time: 62ms
memory: 123704kb

input:

2854 2864

output:

513408195

result:

ok 1 number(s): "513408195"

Test #30:

score: 41
Accepted
time: 65ms
memory: 123624kb

input:

2887 2803

output:

58832696

result:

ok 1 number(s): "58832696"

Test #31:

score: 41
Accepted
time: 68ms
memory: 123772kb

input:

2800 2925

output:

804387597

result:

ok 1 number(s): "804387597"

Test #32:

score: 41
Accepted
time: 58ms
memory: 123584kb

input:

2842 2813

output:

971828715

result:

ok 1 number(s): "971828715"

Test #33:

score: 41
Accepted
time: 72ms
memory: 123648kb

input:

2808 2972

output:

329457042

result:

ok 1 number(s): "329457042"

Test #34:

score: 41
Accepted
time: 65ms
memory: 123644kb

input:

2821 2853

output:

81282690

result:

ok 1 number(s): "81282690"

Test #35:

score: 41
Accepted
time: 70ms
memory: 123704kb

input:

2875 2956

output:

105351485

result:

ok 1 number(s): "105351485"

Test #36:

score: 41
Accepted
time: 63ms
memory: 123716kb

input:

2879 2852

output:

672034506

result:

ok 1 number(s): "672034506"

Extra Test:

score: 0
Extra Test Passed