QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#821419 | #9451. Expected Waiting Time | KKT89 | RE | 650ms | 3672kb | C++17 | 5.6kb | 2024-12-19 15:55:20 | 2024-12-19 15:55:21 |
Judging History
answer
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
ll myRand(ll B) { return (ull)rng() % B; }
#line 2 "modint/arbitrary-modint.hpp"
#line 2 "modint/barrett-reduction.hpp"
#include <utility>
using namespace std;
struct Barrett {
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
u32 m;
u64 im;
Barrett() : m(), im() {}
Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
constexpr inline i64 quo(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? x - 1 : x;
}
constexpr inline i64 rem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
return m <= r ? r + m : r;
}
constexpr inline pair<i64, int> quorem(u64 n) {
u64 x = u64((__uint128_t(n) * im) >> 64);
u32 r = n - x * m;
if (m <= r) return {x - 1, r + m};
return {x, r};
}
constexpr inline i64 pow(u64 n, i64 p) {
u32 a = rem(n), r = m == 1 ? 0 : 1;
while (p) {
if (p & 1) r = rem(u64(r) * a);
a = rem(u64(a) * a);
p >>= 1;
}
return r;
}
};
#line 4 "modint/arbitrary-modint.hpp"
template <int id> struct ArbitraryModIntBase {
int x;
ArbitraryModIntBase() : x(0) {}
ArbitraryModIntBase(int64_t y) {
int z = y % get_mod();
if (z < 0) z += get_mod();
x = z;
}
ArbitraryModIntBase &operator+=(const ArbitraryModIntBase &p) {
if ((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModIntBase &operator-=(const ArbitraryModIntBase &p) {
if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
ArbitraryModIntBase &operator*=(const ArbitraryModIntBase &p) {
x = rem((unsigned long long)x * p.x);
return *this;
}
ArbitraryModIntBase &operator/=(const ArbitraryModIntBase &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModIntBase operator-() const { return ArbitraryModIntBase(-x); }
ArbitraryModIntBase operator+() const { return *this; }
ArbitraryModIntBase operator+(const ArbitraryModIntBase &p) const { return ArbitraryModIntBase(*this) += p; }
ArbitraryModIntBase operator-(const ArbitraryModIntBase &p) const { return ArbitraryModIntBase(*this) -= p; }
ArbitraryModIntBase operator*(const ArbitraryModIntBase &p) const { return ArbitraryModIntBase(*this) *= p; }
ArbitraryModIntBase operator/(const ArbitraryModIntBase &p) const { return ArbitraryModIntBase(*this) /= p; }
bool operator==(const ArbitraryModIntBase &p) const { return x == p.x; }
bool operator!=(const ArbitraryModIntBase &p) const { return x != p.x; }
ArbitraryModIntBase inverse() const {
int a = x, b = get_mod(), u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ArbitraryModIntBase(u);
}
ArbitraryModIntBase pow(int64_t n) const {
ArbitraryModIntBase ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ArbitraryModIntBase &p) { return os << p.x; }
friend istream &operator>>(istream &is, ArbitraryModIntBase &a) {
int64_t t;
is >> t;
a = ArbitraryModIntBase(t);
return (is);
}
int get() const { return x; }
inline unsigned int rem(unsigned long long p) { return barrett().rem(p); }
static inline Barrett &barrett() {
static Barrett b;
return b;
}
static inline int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) {
assert(0 < md && md <= (1LL << 30) - 1);
get_mod() = md;
barrett() = Barrett(md);
}
};
using ArbitraryModInt = ArbitraryModIntBase<-1>;
/**
* @brief modint (2^{30} 未満の任意 mod 用)
*/
// ax+by = gcd(a,b) の整数解を求める
// |x| <= |b|, |y| <= |a|
// https://onlinejudge.u-aizu.ac.jp/courses/library/6/NTL/1/NTL_1_E
ll extgcd(ll a, ll b, ll &x, ll &y) {
ll d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= a / b * x;
} else {
x = 1, y = 0;
}
return d;
}
// a^-1 (mod b) を求める
ll modinv(ll a, ll b) {
assert(gcd(a, b) == 1);
ll x, y;
extgcd(a, b, x, y);
return (x + b) % b;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int q;
cin >> q;
while (q--) {
int n, mod;
cin >> n >> mod;
ArbitraryModInt::set_mod(mod);
ArbitraryModInt b, A, B;
cin >> b >> A >> B;
vector<ArbitraryModInt> C(n + 1);
C[0] = 1;
for (int i = 1; i <= n; ++i) {
C[i] = C[i - 1] * ArbitraryModInt(i + 1).inverse() * (4 * i - 2);
}
ArbitraryModInt res = 0, cnt = 0;
ArbitraryModInt a = 0;
for (int i = 1; i <= 2 * n; ++i) {
b = (A * b + B);
a += b + 1;
if (i % 2 == 0) {
cnt += C[i / 2 - 1] * C[n - i / 2];
}
res += (cnt * 2 - C[n] + mod) * a;
}
cout << res / C[n] << "\n";
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3620kb
input:
5 1 1000000007 0 1 0 2 1000000007 0 1 1 2 7 5 2 3 3 31 15 6 24 20 1000000007 0 1 0
output:
1 12 1 21 879705565
result:
ok 5 number(s): "1 12 1 21 879705565"
Test #2:
score: 0
Accepted
time: 650ms
memory: 3672kb
input:
4400 3954 1000000007 0 1 0 1306 1000000007 0 1 0 3774 1000000007 0 1 0 3345 1000000007 0 1 0 891 1000000007 0 1 0 2462 1000000007 0 1 0 237 1000000007 0 1 0 26 1000000007 0 1 0 2510 1000000007 0 1 0 637 1000000007 0 1 0 3250 1000000007 0 1 0 3447 1000000007 0 1 0 1222 1000000007 0 1 0 133 1000000007...
output:
440618338 378292891 979368645 915766295 343598158 80867595 161627927 517387931 396936703 42785642 945720545 764273281 186237656 635777911 164064906 548455037 991964184 468137124 561243246 118562285 856945294 642467240 23673926 808943705 897417615 462422554 656411244 204288121 997894281 244685651 762...
result:
ok 4400 numbers
Test #3:
score: -100
Runtime Error
input:
1019 338 1863833207 1820742817 1507924477 1822273457 770 1386304741 1088481071 1216187083 170973217 597 1604266739 620750027 196415899 456280997 105 1008587891 184044403 24836083 926135599 357 1165127407 440925347 1103369747 912263123 82 1639766993 263045351 631010551 1412721139 928 1715915153 25383...