QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#81785#5505. Great Chasetute7627AC ✓1402ms9632kbC++179.4kb2023-02-26 12:14:322023-02-26 12:14:33

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-02-26 12:14:33]
  • 评测
  • 测评结果:AC
  • 用时:1402ms
  • 内存:9632kb
  • [2023-02-26 12:14:32]
  • 提交

answer

//#define _GLIBCXX_DEBUG

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>
using namespace std;


#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
  return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
  vector<T>inv(ord.size());
  for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
  return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
namespace converter{
  int dict[500];
  const string lower="abcdefghijklmnopqrstuvwxyz";
  const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  const string digit="0123456789";
  const string digit1="123456789";
  void regi_str(const string &t){
    for(int i=0;i<t.size();i++){
      dict[t[i]]=i;
    }
  }
  void regi_int(const string &t){
    for(int i=0;i<t.size();i++){
      dict[i]=t[i];
    }
  }
  vector<int>to_int(const string &s,const string &t){
    regi_str(t);
    vector<int>ret(s.size());
    for(int i=0;i<s.size();i++){
      ret[i]=dict[s[i]];
    }
    return ret;
  }
  vector<int>to_int(const string &s){
    auto t=s;
    sort(t.begin(),t.end());
    t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  
  vector<vector<int>>to_int(const vector<string>&s,const string &t){
    regi_str(t);
    vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
    for(int i=0;i<s.size();i++){
      for(int j=0;j<s.size();j++){
        ret[i][j]=dict[s[i][j]];
      }
    }
    return ret;
  }
  vector<vector<int>>to_int(const vector<string>&s){
    string t;
    for(int i=0;i<s.size();i++){
      t+=s[i];
    }
    sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
    return to_int(s,t);
  }
  string to_str(const vector<int>&s,const string &t){
    regi_int(t);
    string ret;
    for(auto z:s)ret+=dict[z];
    return ret;
  }
  vector<string> to_str(const vector<vector<int>>&s,const string &t){
    regi_int(t);
    vector<string>ret(s.size());
    for(int i=0;i<s.size();i++){
      for(auto z:s[i])ret[i]+=dict[z];
    }
    return ret;
  }
}
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():to(-1),id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}

int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  ll t;cin>>t;
  lfs;
  while(t--){
    ll n,V;cin>>n>>V;
    vector<ll>p(n),v(n);
    rep(i,0,n)cin>>p[i]>>v[i];
    ld ok=1e13,ng=0;
    ll num=120;
    while(num--){
      ld l=-INF,r=INF;
      ld mid=(ok+ng)/2;
      rep(i,0,n){
        if(p[i]<0)chmax(l,p[i]+v[i]*mid);
        else chmin(r,p[i]-v[i]*mid);
      }
      if(l>r)ok=mid;
      else ng=mid;
    }
    cout<<ok*V<<endl;
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 3636kb

input:

3
4 9
10 2
-7 2
-6 1
7 1
2 8
-1 7
1 6
2 3
-1000000000000 1
1000000000000 1

output:

38.2500000000
1.2307692308
3000000000000.0000002384

result:

ok 3 numbers

Test #2:

score: 0
Accepted
time: 799ms
memory: 3852kb

input:

10000
200 997007
405524182320 754760
686939601648 419804
687047488212 715566
1446157132 4594
-670522037 4673
763634629282 253755
424307411732 275041
1582708381 8473
-667425982 4622
-522841486 1427
702430907988 460271
1405423646 1060
1497754648 6227
883363410675 723547
56899800372 46435
-810216390 64...

output:

145405766328.3491100520
16414958969.7272811923
5202715639.8351839003
321977234.1563258690
45384199210.2216839716
183885744.7692307692
1708925225.2304723581
89786664971.5579426438
13924365606.2873887951
412975327.5555555556
965508404.5121014926
4703493416.2883765241
352961619.3810438190
5575125771.79...

result:

ok 10000 numbers

Test #3:

score: 0
Accepted
time: 1344ms
memory: 3808kb

input:

93
15435 968117
4196666 184
-5069875 255
-9782648 980
-1978138 176
9333323 764
-4323540 12
-8442049 319
-5371878 137
2881306 10
-4050629 133
-4659099 59
-5189169 320
-2256647 99
-3686648 37
1059255 33
-223142 20
8040933 408
8407764 705
694547 38
-7913614 746
-3573355 132
5919585 189
-3756662 94
-795...

output:

189662921.3636363636
197971181.3333333333
997533531.7376295925
6439673170.6657417850
993821598110.6610778570
22727977326.4026609883
34702455207.5185040310
677770533.9298174987
46631726883.9691332355
5446481867.1290322584
11336247450.2720785951
4409370840.4391316255
15681606050.5762868561
14986614231...

result:

ok 93 numbers

Test #4:

score: 0
Accepted
time: 1102ms
memory: 9632kb

input:

5
400000 999972
172811492468 106699
171900177092 102097
194121748377 184014
190302947556 172722
183121572232 149212
196566712700 190884
171376795991 99358
522927044000 159597
-129031052077 34395
189422320931 170012
-275879974024 638546
408864707565 98475
-106703244806 368801
192128798630 178213
2915...

output:

519985220219.8117709160
511413015796.7664753795
424240880533.6340203881
518849481155.5039187968
1882496988186.4440000057

result:

ok 5 numbers

Test #5:

score: 0
Accepted
time: 1402ms
memory: 6660kb

input:

38
16668 999947
-3844782803 511
-210897941456 464872
618726004990 714384
-954596898686 225256
96675744 1148
-1515974078 11375
-206213840984 706184
306078847 3947
-474818331950 391451
-616022698917 561244
123378707 1540
-640636592655 406006
459201391325 908506
-733249583 5719
496163273 6238
619876911...

output:

89670748252.9786080196
98630840901.5076069608
29393530999.8943277895
50801000770.9559854232
39668001027.2693313472
467846478226.4113708436
30789914370.5743116140
23151476830.9050984345
51606123416.6258275919
151713060001.6625889242
100944679009.6092862785
766785664078.3589817286
39969642788.06186738...

result:

ok 38 numbers