QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#809641 | #9804. Guess the Polygon | OIer_kzc | ML | 7ms | 3828kb | C++20 | 5.5kb | 2024-12-11 16:28:38 | 2024-12-11 16:28:47 |
Judging History
answer
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#define LOG(FMT...) fprintf(stderr, FMT)
#define fi first
#define se second
#define em emplace
#define eb emplace_back
using namespace std;
typedef long long LL;
typedef vector<char> LLL;
constexpr int N = 1005, LB = 1, B = 1 << LB;
LLL operator + (const LLL &a, const LLL &b) {
LLL c(max(a.size(), b.size()));
int x = 0;
for (int i = 0; i < a.size() || i < b.size(); ++i) {
if (i < a.size()) x += a[i];
if (i < b.size()) x += b[i];
c[i] = x & B - 1;
x >>= LB;
}
if (x) {
c.eb(x);
}
return c;
}
bool operator < (const LLL &a, const LLL &b) {
if (a.size() != b.size()) {
return a.size() < b.size();
}
for (int i = (int)a.size() - 1; ~i; --i) {
if (a[i] != b[i]) {
return a[i] < b[i];
}
}
return false;
}
LLL operator - (LLL a, const LLL &b) {
if (a < b) {
LOG("ERR\n");
exit(0);
}
for (int i = 0; i < (int)a.size(); ++i) {
if (i < (int)b.size()) a[i] -= b[i];
if (a[i] < 0) {
a[i] += B;
a[i + 1] -= 1;
}
}
while (a.size() && !a.back()) {
a.pop_back();
}
return a;
}
LLL operator * (const LLL &a, const LLL &b) {
LLL c(a.size() + b.size() - 1, 0);
for (int i = 0; i < (int)a.size(); ++i) {
for (int j = 0; j < (int)b.size(); ++j) {
c[i + j] += a[i] * b[j];
}
}
int x = 0;
for (int i = 0; i < (int)c.size(); ++i) {
x += c[i];
c[i] = x & B - 1;
x >>= LB;
}
if (x < 0) {
LOG("ERR\n");
while (true);
}
while (x) {
c.eb(x & B - 1);
x >>= LB;
}
return c;
}
void wr(const LLL &v) {
if (v.empty()) {
printf(" 0");
return;
}
LL t = 0;
for (int i = (int)v.size() - 1; ~i; --i) {
t = t << 1 | v[i];
}
printf(" %lld", t);
}
LLL operator / (LLL a, const LLL &b) {
if (a < b) {
LOG("ERR div\n");
exit(0);
}
if (b.empty() || b.back() == 0) {
LOG("ERR div b\n");
exit(0);
}
LLL ret((int)a.size() - (int)b.size() + 1, 0);
int x = 0;
while (a.size() >= b.size()) {
a.back() += 2 * x;
bool greater = true;
for (int j = 0; j < (int)b.size(); ++j) {
if (a[(int)a.size() - 1 - j] != b[(int)b.size() - 1 - j]) {
if (a[(int)a.size() - 1 - j] < b[(int)b.size() - 1 - j]) {
greater = false;
}
break;
}
}
if (greater) {
ret[(int)a.size() - (int)b.size()] = 1;
for (int j = (int)b.size() - 1; ~j; --j) {
a[(int)a.size() - 1 - j] -= b[(int)b.size() - 1 - j];
if (a[(int)a.size() - 1 - j] < 0) {
a[(int)a.size() - 1 - j] += B;
a[(int)a.size() - j] -= 1;
}
}
}
x = a.back(), a.pop_back();
}
while (ret.size() && !ret.back()) {
ret.pop_back();
}
for (int x : a) {
if (x) {
LOG("ERR\n");
exit(0);
}
}
return ret;
}
LLL lshift(LLL a) {
int x = 0;
for (int i = (int)a.size() - 1; ~i; --i) {
x = x * B + a[i];
a[i] = x >> 1;
x &= 1;
}
while (a.size() && !a.back()) {
a.pop_back();
}
return a;
}
LLL rshift(LLL a) {
int x = 0;
for (int i = 0; i < a.size(); ++i) {
x += 2 * a[i];
a[i] = x & B - 1;
x >>= LB;
}
if (x) {
a.eb(x);
}
return a;
}
LLL gcd(const LLL &a, const LLL &b) {
if (a.empty()) {
return b;
}
if (b.empty()) {
return a;
}
if (!(a[0] & 1) && !(b[0] & 1)) {
return rshift(gcd(lshift(a), lshift(b)));
}
if (!(a[0] & 1)) {
return gcd(lshift(a), b);
}
if (!(b[0] & 1)) {
return gcd(a, lshift(b));
}
return a < b ? gcd(a, b - a) : gcd(a - b, b);
}
void setv(LLL &v, LL x) {
v.clear();
while (x) {
v.eb(x & B - 1);
x >>= LB;
}
}
LL gcd(LL x, LL y) {
return y ? gcd(y, x % y) : x;
}
pair<LL, LL> simp(LL a, LL b) {
if (a == 0ll) {
return {0ll, 1ll};
}
LL d = gcd(a, b);
a = a / d, b = b / d;
return {a, b};
}
pair<LL, LL> operator + (const pair<LL, LL> &s, const pair<LL, LL> &t) {
return simp(s.fi * t.se + s.se * t.fi, s.se * t.se);
}
pair<LL, LL> operator * (const pair<LL, LL> &s, int t) {
return simp(s.fi * t, s.se);
}
pair<LL, LL> operator / (const pair<LL, LL> &s, int t) {
return simp(s.fi, s.se * t);
}
struct Frac {
LLL x, y;
Frac() : x{}, y{1} {}
Frac(const LLL &_x, const LLL &_y) : x(_x), y(_y) {}
Frac simp(LLL a, LLL b) const {
LLL d = gcd(a, b);
a = a / d, b = b / d;
return Frac(a, b);
}
Frac(const pair<LL, LL> &t) {
setv(x, t.fi), setv(y, t.se);
}
Frac operator + (const Frac &t) const {
return simp(x * t.y + y * t.x, y * t.y);
}
void write() const {
printf("!");
wr(x), wr(y);
puts("");
fflush(stdout);
}
};
pair<LL, LL> Q(pair<LL, LL> t) {
printf("? %lld %lld\n", t.fi, t.se);
fflush(stdout);
pair<LL, LL> ret;
scanf("%lld%lld", &ret.fi, &ret.se);
return ret;
}
int n;
int xs[N], szd;
pair<LL, LL> v[N];
void solve1() {
for (int i = 1; i < n - 1; ++i) {
v[i] = Q(simp(xs[i], 1ll));
}
Frac res;
v[0] = v[n - 1] = {0ll, 1ll};
for (int i = 1; i < n; ++i) {
res = res + Frac((v[i] + v[i - 1]) * (xs[i] - xs[i - 1]) / 2);
}
res.write();
fflush(stdout);
}
void solve2() {
Frac res;
for (int i = 1; i < szd; ++i) {
res = res + Frac(Q(simp(xs[i] + xs[i - 1], 2ll)) * (xs[i] - xs[i - 1]));
}
res.write();
fflush(stdout);
}
int main() {
int task;
for (scanf("%d", &task); task--; ) {
scanf("%d", &n);
for (int i = 0, y; i < n; ++i) {
scanf("%d%d", xs + i, &y);
}
sort(xs, xs + n);
szd = unique(xs, xs + n) - xs;
if (szd == n) {
solve1();
} else {
solve2();
}
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3764kb
input:
2 4 3 0 1 3 1 1 0 0 1 1 1 1 3 0 0 999 1000 1000 999 1999 1000
output:
? 1 2 ? 2 1 ! 3 1 ? 999 1 ! 1999 2
result:
ok correct! (2 test cases)
Test #2:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
9 4 1 1 1 3 3 0 0 0 3 2 1 2 4 0 0 1 3 1 1 3 0 1 2 3 2 4 0 0 3 0 1 2 1 1 1 2 1 2 4 0 0 3 0 1 2 1 1 1 1 1 2 4 0 0 3 0 1 1 1 2 1 2 1 1 3 1000 0 0 0 0 1000 500 1 4 0 0 1000 0 1000 1000 0 1000 1000 1 5 0 1 1000 1000 1000 0 0 1000 1 0 1999 2 1000 1 9 4 1000 3 1 2 1000 3 1000 1 1 2 1 0 0 1 1000 4 0 500 1 1...
output:
? 1 2 ? 2 1 ! 5 2 ? 1 2 ? 2 1 ! 7 2 ? 1 2 ? 2 1 ! 3 2 ? 1 2 ? 2 1 ! 2 1 ? 1 2 ? 2 1 ! 5 2 ? 500 1 ! 500000 1 ? 500 1 ! 1000000 1 ? 1 2 ? 1001 2 ! 1999999 2 ? 1 2 ? 3 2 ? 5 2 ? 7 2 ! 4003 2
result:
ok correct! (9 test cases)
Test #3:
score: 0
Accepted
time: 7ms
memory: 3828kb
input:
78 8 951 614 927 614 957 614 957 604 937 614 942 619 951 610 927 604 10 1 25 2 21 2 10 1 7 562 260 602 250 582 255 587 260 602 260 562 250 577 260 10 1 15 2 15 2 10 1 3 454 98 494 68 455 68 117 4 3 526 589 566 559 527 559 117 4 3 854 496 854 466 894 466 15 1 3 797 264 827 254 857 264 10 1 3 719 737 ...
output:
? 932 1 ? 1879 2 ? 1893 2 ? 954 1 ! 317 1 ? 1139 2 ? 1159 2 ? 1169 2 ? 1189 2 ! 375 1 ? 455 1 ! 585 1 ? 527 1 ! 585 1 ? 874 1 ! 600 1 ? 827 1 ! 300 1 ? 739 1 ! 600 1 ? 162 1 ! 400 1 ? 1489 2 ? 1499 2 ? 772 1 ! 275 1 ? 1869 2 ? 1879 2 ? 1889 2 ? 1899 2 ? 1909 2 ? 1919 2 ? 1929 2 ? 1939 2 ? 1949 2 ? 1...
result:
ok correct! (78 test cases)
Test #4:
score: -100
Memory Limit Exceeded
input:
34 24 123 815 168 800 133 795 27 827 153 805 28 830 178 780 138 810 78 830 192 772 148 790 88 810 43 825 183 795 103 805 163 785 118 800 93 825 63 835 73 815 58 820 198 790 48 840 108 820 10 3 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 15 1 24...
output:
? 28 1 ? 43 1 ? 48 1 ? 58 1 ? 63 1 ? 73 1 ? 78 1 ? 88 1 ? 93 1 ? 103 1 ? 108 1 ? 118 1 ? 123 1 ? 133 1 ? 138 1 ? 148 1 ? 153 1 ? 163 1 ? 168 1 ? 178 1 ? 183 1 ? 192 1 ! 1925 1 ? 54 1 ? 69 1 ? 74 1 ? 84 1 ? 89 1 ? 99 1 ? 104 1 ? 114 1 ? 119 1 ? 129 1 ? 134 1 ? 144 1 ? 149 1 ? 159 1 ? 164 1 ? 174 1 ? ...