QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#808315#7. 主旋律wzj33300100 ✓174ms3828kbC++2312.1kb2024-12-10 19:45:212024-12-10 19:45:31

Judging History

你现在查看的是最新测评结果

  • [2024-12-10 19:45:31]
  • 评测
  • 测评结果:100
  • 用时:174ms
  • 内存:3828kb
  • [2024-12-10 19:45:21]
  • 提交

answer

/**
  * created     : 30.07.2024 19:19:49
  * author      : wzj33300
  */

#include <bits/stdc++.h>
using namespace std;

#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double;  // or double, if TL is tight
using str = string;      // yay python!

// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second

// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;

// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)

#define rep_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))

#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T>& a, const T& b) {
  return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T>& a, const T& b) {
  return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353;  // 1e9+7;
const int Big = 1e9;  // not too close to INT_MAX
const ll BIG = 1e18;  // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1};  // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <class T>
bool ckmin(T& a, const T& b) {
  return b < a ? a = b, 1 : 0;
}  // set a = min(a,b)
template <class T>
bool ckmax(T& a, const T& b) {
  return a < b ? a = b, 1 : 0;
}  // set a = max(a,b)

template <class T, class U>
T fstTrue(T lo, T hi, U f) {
  ++hi;
  assert(lo <= hi);  // assuming f is increasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo) / 2;
    f(mid) ? hi = mid : lo = mid + 1;
  }
  return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
  --lo;
  assert(lo <= hi);  // assuming f is decreasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo + 1) / 2;
    f(mid) ? lo = mid : hi = mid - 1;
  }
  return lo;
}
template <typename T>
T inverse(T a, T m) {
  T u = 0, v = 1;
  while (a != 0) {
    T t = m / a;
    m -= t * a;
    swap(a, m);
    u -= t * v;
    swap(u, v);
  }
  assert(m == 1);
  return u;
}

template <typename T>
class Modular {
 public:
  using Type = typename decay<decltype(T::value)>::type;

  constexpr Modular() : value() {}
  template <typename U>
  Modular(const U& x) {
    value = normalize(x);
  }

  template <typename U>
  static Type normalize(const U& x) {
    Type v;
    if (-mod() <= x && x < mod())
      v = static_cast<Type>(x);
    else
      v = static_cast<Type>(x % mod());
    if (v < 0) v += mod();
    return v;
  }

  const Type& operator()() const { return value; }
  template <typename U>
  explicit operator U() const { return static_cast<U>(value); }
  constexpr static Type mod() { return T::value; }

  Modular& operator+=(const Modular& other) {
    if ((value += other.value) >= mod()) value -= mod();
    return *this;
  }
  Modular& operator-=(const Modular& other) {
    if ((value -= other.value) < 0) value += mod();
    return *this;
  }
  template <typename U>
  Modular& operator+=(const U& other) { return *this += Modular(other); }
  template <typename U>
  Modular& operator-=(const U& other) { return *this -= Modular(other); }
  Modular& operator++() { return *this += 1; }
  Modular& operator--() { return *this -= 1; }
  Modular operator++(int) {
    Modular result(*this);
    *this += 1;
    return result;
  }
  Modular operator--(int) {
    Modular result(*this);
    *this -= 1;
    return result;
  }
  Modular operator-() const { return Modular(-value); }

  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
    value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
    return *this;
  }
  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) {
    long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
    value = normalize(value * rhs.value - q * mod());
    return *this;
  }
  template <typename U = T>
  typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
    value = normalize(value * rhs.value);
    return *this;
  }

  Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }

  friend const Type& abs(const Modular& x) { return x.value; }

  template <typename U>
  friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename U>
  friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename V, typename U>
  friend V& operator>>(V& stream, Modular<U>& number);

 private:
  Type value;
};

template <typename T>
bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U>
bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U>
bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }

template <typename T>
bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U>
bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U>
bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }

template <typename T>
bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }

template <typename T>
Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U>
Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U>
Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }

template <typename T>
Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U>
Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U>
Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }

template <typename T>
Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U>
Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U>
Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }

template <typename T>
Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U>
Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U>
Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }

template <typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
  assert(b >= 0);
  Modular<T> x = a, res = 1;
  U p = b;
  while (p > 0) {
    if (p & 1) res *= x;
    x *= x;
    p >>= 1;
  }
  return res;
}

template <typename T>
bool IsZero(const Modular<T>& number) {
  return number() == 0;
}

template <typename T>
string to_string(const Modular<T>& number) {
  return to_string(number());
}

// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
  return stream << number();
}

// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
  typename common_type<typename Modular<T>::Type, long long>::type x;
  stream >> x;
  number.value = Modular<T>::normalize(x);
  return stream;
}

// using ModType = int;

// struct VarMod { static ModType value; };
// ModType VarMod::value;
// ModType& md = VarMod::value;
// using Mint = Modular<VarMod>;

constexpr int md = 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;

// vector<Mint> fact(1, 1);
// vector<Mint> inv_fact(1, 1);

// Mint C(int n, int k) {
//   if (k < 0 || k > n) {
//     return 0;
//   }
//   while ((int) fact.size() < n + 1) {
//     fact.push_back(fact.back() * (int) fact.size());
//     inv_fact.push_back(1 / fact.back());
//   }
//   return fact[n] * inv_fact[k] * inv_fact[n - k];
// }

// signed main() {
int main() {
  // freopen(".in", "r",stdin);
  // freopen(".out","w",stdout);
  ios::sync_with_stdio(false);
  cin.tie(0);

  int n, m;
  std::cin >> n >> m;
  std::vector<int> ine(n), oute(n);
  for (int i = 0; i < m; i++) {
    int u, v;
    std::cin >> u >> v;
    u--, v--;
    oute[u] |= 1 << v;
    ine[v] |= 1 << u;
  }
  std::vector<Mint> power2(m + 1, 1);
  for (int i = 1; i <= m; i++) power2[i] = power2[i - 1] * 2;
  std::vector<Mint> f(1 << n), g(1 << n);
  std::vector<int> h(1 << n), w(1 << n);
  for (int s = 1; s < (1 << n); s++) {
    int p = lowbit(s), ns = s ^ (1 << p);
    for (int t = ns; t; t = (t - 1) & ns) {
      g[s] -= f[s ^ t] * g[t];
    }
    h[s] = h[ns] + pct(ine[p] & ns) + pct(oute[p] & ns);
    f[s] = power2[h[s]];
    for (int t = s; t; t = (t - 1) & s) {
      if (t == s)
        w[t] = 0;
      else {
        int p2 = lowbit(s ^ t);
        w[t] = w[t ^ (1 << p2)] - pct(oute[p2] & (s ^ t ^ (1 << p2))) + pct(ine[p2] & t);
      }
      f[s] -= g[t] * power2[w[t] + h[s ^ t]];
    }
    g[s] += f[s];
  }
  std::cout << f[(1 << n) - 1] << std::endl;
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Pretests


Final Tests

Test #1:

score: 10
Accepted
time: 1ms
memory: 3824kb

input:

5 15
4 3
4 2
2 5
2 1
1 2
5 1
3 2
4 1
1 4
5 4
3 4
5 3
2 3
1 5
3 1

output:

9390

result:

ok single line: '9390'

Test #2:

score: 10
Accepted
time: 0ms
memory: 3608kb

input:

5 18
4 3
4 2
2 5
2 1
1 2
5 1
3 2
4 1
1 4
5 4
3 4
5 3
2 3
1 5
3 1
1 3
5 2
2 4

output:

100460

result:

ok single line: '100460'

Test #3:

score: 10
Accepted
time: 1ms
memory: 3592kb

input:

8 35
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1

output:

299463717

result:

ok single line: '299463717'

Test #4:

score: 10
Accepted
time: 1ms
memory: 3528kb

input:

8 40
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1
1 2
4 8
5 8
4 3
5 7

output:

21156439

result:

ok single line: '21156439'

Test #5:

score: 10
Accepted
time: 1ms
memory: 3828kb

input:

8 45
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1
1 2
4 8
5 8
4 3
5 7
2 8
1 5
3 8
1 3
4 1

output:

426670664

result:

ok single line: '426670664'

Test #6:

score: 10
Accepted
time: 0ms
memory: 3800kb

input:

10 65
5 10
1 8
7 8
6 2
5 7
9 2
4 7
3 7
1 6
3 10
7 9
8 4
7 1
5 2
1 7
4 2
8 3
8 1
3 9
8 2
2 10
4 3
9 10
5 3
3 8
3 4
6 10
4 8
4 5
5 8
9 5
9 6
10 2
10 5
6 1
2 1
9 4
7 10
5 6
10 7
10 8
5 9
9 7
9 8
4 10
8 9
7 2
2 7
10 1
7 3
6 8
7 6
9 1
6 5
2 4
6 3
2 9
8 10
10 9
8 5
4 1
6 9
2 3
1 3
1 9

output:

931896041

result:

ok single line: '931896041'

Test #7:

score: 10
Accepted
time: 1ms
memory: 3612kb

input:

10 70
5 10
1 8
7 8
6 2
5 7
9 2
4 7
3 7
1 6
3 10
7 9
8 4
7 1
5 2
1 7
4 2
8 3
8 1
3 9
8 2
2 10
4 3
9 10
5 3
3 8
3 4
6 10
4 8
4 5
5 8
9 5
9 6
10 2
10 5
6 1
2 1
9 4
7 10
5 6
10 7
10 8
5 9
9 7
9 8
4 10
8 9
7 2
2 7
10 1
7 3
6 8
7 6
9 1
6 5
2 4
6 3
2 9
8 10
10 9
8 5
4 1
6 9
2 3
1 3
1 9
5 4
1 5
5 1
10 4
10 6

output:

303656759

result:

ok single line: '303656759'

Test #8:

score: 10
Accepted
time: 174ms
memory: 3812kb

input:

15 130
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

717458968

result:

ok single line: '717458968'

Test #9:

score: 10
Accepted
time: 168ms
memory: 3800kb

input:

15 140
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

459157220

result:

ok single line: '459157220'

Test #10:

score: 10
Accepted
time: 165ms
memory: 3744kb

input:

15 150
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

663282473

result:

ok single line: '663282473'