QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#803594#9866. Extracting Weightsucup-team5243#RE 1ms3872kbC++1712.9kb2024-12-07 17:44:292024-12-07 17:44:30

Judging History

你现在查看的是最新测评结果

  • [2024-12-07 17:44:30]
  • 评测
  • 测评结果:RE
  • 用时:1ms
  • 内存:3872kb
  • [2024-12-07 17:44:29]
  • 提交

answer

#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
const i64 INF = 1001001001001001001;
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
using namespace std;

#include <bitset>
#include <utility>

namespace nachia{

template<class Elem>
class CsrArray{
public:
    struct ListRange{
        using iterator = typename std::vector<Elem>::iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        Elem& operator[](int i) const { return begi[i]; }
    };
    struct ConstListRange{
        using iterator = typename std::vector<Elem>::const_iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        const Elem& operator[](int i) const { return begi[i]; }
    };
private:
    int m_n;
    std::vector<Elem> m_list;
    std::vector<int> m_pos;
public:
    CsrArray() : m_n(0), m_list(), m_pos() {}
    static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
        CsrArray res;
        res.m_n = n;
        std::vector<int> buf(n+1, 0);
        for(auto& [u,v] : items){ ++buf[u]; }
        for(int i=1; i<=n; i++) buf[i] += buf[i-1];
        res.m_list.resize(buf[n]);
        for(int i=(int)items.size()-1; i>=0; i--){
            res.m_list[--buf[items[i].first]] = std::move(items[i].second);
        }
        res.m_pos = std::move(buf);
        return res;
    }
    static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
        CsrArray res;
        res.m_n = pos.size() - 1;
        res.m_list = std::move(list);
        res.m_pos = std::move(pos);
        return res;
    }
    ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    int size() const { return m_n; }
    int fullSize() const { return (int)m_list.size(); }
};

} // namespace nachia
#include <cassert>

namespace nachia{


struct Graph {
public:
    struct Edge{
        int from, to;
        void reverse(){ std::swap(from, to); }
        int xorval() const { return from ^ to; }
    };
    Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
    Graph(int n, const std::vector<std::pair<int, int>>& edges, int undirected = false) : m_n(n), m_isUndir(undirected){
        m_e.resize(edges.size());
        for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
    }
    template<class Cin>
    static Graph Input(Cin& cin, int n, bool undirected, int m, int offset = 0){
        Graph res(n, undirected, m);
        for(int i=0; i<m; i++){
            int u, v; cin >> u >> v;
            res[i].from = u - offset;
            res[i].to = v - offset;
        }
        return res;
    }
    int numVertices() const noexcept { return m_n; }
    int numEdges() const noexcept { return int(m_e.size()); }
    int addNode() noexcept { return m_n++; }
    int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
    Edge& operator[](int ei) noexcept { return m_e[ei]; }
    const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
    Edge& at(int ei) { return m_e.at(ei); }
    const Edge& at(int ei) const { return m_e.at(ei); }
    auto begin(){ return m_e.begin(); }
    auto end(){ return m_e.end(); }
    auto begin() const { return m_e.begin(); }
    auto end() const { return m_e.end(); }
    bool isUndirected() const noexcept { return m_isUndir; }
    void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
    void contract(int newV, const std::vector<int>& mapping){
        assert(numVertices() == int(mapping.size()));
        for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
        for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
        m_n = newV;
    }
    std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
        int n = numVertices();
        assert(n == int(mapping.size()));
        for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
        std::vector<int> indexV(n), newV(num);
        for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
        std::vector<Graph> res; res.reserve(num);
        for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
        for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
        return res;
    }
    CsrArray<int> getEdgeIndexArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(int i=0; i<numEdges(); i++){
            auto e = operator[](i);
            src.emplace_back(e.from, i);
            if(undirected) src.emplace_back(e.to, i);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
    CsrArray<int> getAdjacencyArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(auto e : m_e){
            src.emplace_back(e.from, e.to);
            if(undirected) src.emplace_back(e.to, e.from);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
    int m_n;
    std::vector<Edge> m_e;
    bool m_isUndir;
};

} // namespace nachia

namespace nachia{

struct HeavyLightDecomposition{
private:

    int N;
    std::vector<int> P;
    std::vector<int> PP;
    std::vector<int> PD;
    std::vector<int> D;
    std::vector<int> I;

    std::vector<int> rangeL;
    std::vector<int> rangeR;

public:

    HeavyLightDecomposition(const CsrArray<int>& E = CsrArray<int>::Construct(1, {}), int root = 0){
        N = E.size();
        P.assign(N, -1);
        I.assign(N, 0); I[0] = root;
        int iI = 1;
        for(int i=0; i<iI; i++){
            int p = I[i];
            for(int e : E[p]) if(P[p] != e){
                I[iI++] = e;
                P[e] = p;
            }
        }
        std::vector<int> Z(N, 1);
        std::vector<int> nx(N, -1);
        PP.resize(N);
        for(int i=0; i<N; i++) PP[i] = i;
        for(int i=N-1; i>=1; i--){
            int p = I[i];
            Z[P[p]] += Z[p];
            if(nx[P[p]] == -1) nx[P[p]] = p;
            if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p;
        }

        for(int p : I) if(nx[p] != -1) PP[nx[p]] = p;

        PD.assign(N,N);
        PD[root] = 0;
        D.assign(N,0);
        for(int p : I) if(p != root){
            PP[p] = PP[PP[p]];
            PD[p] = std::min(PD[PP[p]], PD[P[p]]+1);
            D[p] = D[P[p]]+1;
        }
        
        rangeL.assign(N,0);
        rangeR.assign(N,0);
        
        for(int p : I){
            rangeR[p] = rangeL[p] + Z[p];
            int ir = rangeR[p];
            for(int e : E[p]) if(P[p] != e) if(e != nx[p]){
                rangeL[e] = (ir -= Z[e]);
            }
            if(nx[p] != -1){
                rangeL[nx[p]] = rangeL[p] + 1;
            }
        }

        for(int i=0; i<N; i++) I[rangeL[i]] = i;
    }
    
    HeavyLightDecomposition(const Graph& tree, int root = 0)
        : HeavyLightDecomposition(tree.getAdjacencyArray(true), root) {}

    int numVertices() const { return N; }
    int depth(int p) const { return D[p]; }
    int toSeq(int vtx) const { return rangeL[vtx]; }
    int toVtx(int seqidx) const { return I[seqidx]; }
    int toSeq2In(int vtx) const { return rangeL[vtx] * 2 - D[vtx]; }
    int toSeq2Out(int vtx) const { return rangeR[vtx] * 2 - D[vtx] - 1; }
    int parentOf(int v) const { return P[v]; }
    int heavyRootOf(int v) const { return PP[v]; }
    int heavyChildOf(int v) const {
        if(toSeq(v) == N-1) return -1;
        int cand = toVtx(toSeq(v) + 1);
        if(PP[v] == PP[cand]) return cand;
        return -1;
    }

    int lca(int u, int v) const {
        if(PD[u] < PD[v]) std::swap(u, v);
        while(PD[u] > PD[v]) u = P[PP[u]];
        while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; }
        return (D[u] > D[v]) ? v : u;
    }

    int dist(int u, int v) const {
        return depth(u) + depth(v) - depth(lca(u,v)) * 2;
    }

    struct Range{
        int l; int r;
        int size() const { return r-l; }
        bool includes(int x) const { return l <= x && x < r; }
    };

    std::vector<Range> path(int r, int c, bool include_root = true, bool reverse_path = false) const {
        if(PD[c] < PD[r]) return {};
        std::vector<Range> res(PD[c]-PD[r]+1);
        for(int i=0; i<(int)res.size()-1; i++){
            res[i] = { rangeL[PP[c]], rangeL[c]+1 };
            c = P[PP[c]];
        }
        if(PP[r] != PP[c] || D[r] > D[c]) return {};
        res.back() = { rangeL[r]+(include_root?0:1), rangeL[c]+1 };
        if(res.back().l == res.back().r) res.pop_back();
        if(!reverse_path) std::reverse(res.begin(),res.end());
        else for(auto& a : res) a = { N - a.r, N - a.l };
        return res;
    }

    Range subtree(int p) const { return { rangeL[p], rangeR[p] }; }

    int median(int x, int y, int z) const {
        return lca(x,y) ^ lca(y,z) ^ lca(x,z);
    }

    int la(int from, int to, int d) const {
        if(d < 0) return -1;
        int g = lca(from,to);
        int dist0 = D[from] - D[g] * 2 + D[to];
        if(dist0 < d) return -1;
        int p = from;
        if(D[from] - D[g] < d){ p = to; d = dist0 - d; }
        while(D[p] - D[PP[p]] < d){
            d -= D[p] - D[PP[p]] + 1;
            p = P[PP[p]];
        }
        return I[rangeL[p] - d];
    }

    struct ChildrenIterRange {
    struct Iter {
        const HeavyLightDecomposition& hld; int s;
        int operator*() const { return hld.toVtx(s); }
        Iter& operator++(){
            s += hld.subtree(hld.I[s]).size();
            return *this;
        }
        Iter operator++(int) const { auto a = *this; return ++a; }
        bool operator==(Iter& r) const { return s == r.s; }
        bool operator!=(Iter& r) const { return s != r.s; }
    };
        const HeavyLightDecomposition& hld; int v;
        Iter begin() const { return { hld, hld.rangeL[v] + 1 }; }
        Iter end() const { return { hld, hld.rangeR[v] }; }
    };
    ChildrenIterRange children(int v) const {
        return ChildrenIterRange{ *this, v };
    }
};

} // namespace nachia

void testcase(){
    int N, K; cin >> N >> K;
    auto tree = nachia::Graph::Input(cin, N, true, N-1, 1);
    auto hld = nachia::HeavyLightDecomposition(tree, 0);
    using Bitset = bitset<20>;
    vector<Bitset> path(N);
    for(int i=1; i<N; i++) path[i].set(i);
    for(int i=1; i<N; i++){
        int v = hld.toVtx(i);
        int w = hld.parentOf(v);
        path[v] |= path[w];
    }
    vector<Bitset> base(N);
    vector<pair<int,int>> query(N);
    int cnt = 0;
    auto check = [&](int u, int v){
        int g = hld.lca(u,v);
        Bitset q = path[u] | path[v];
        if(g != 0) q &= ~path[hld.parentOf(g)];
        //cout << q << endl;
        rep(i,N) if(q.test(i)) q ^= base[i];
        rep(i,N) if(q.test(i)){
            q.set(N+i);
            rep(j,N) if(base[j].test(i)) base[j] ^= q;
            base[i] = q;
            cnt++;
            query[i] = {u,v};
            break;
        }
    };
    rep(i,N) rep(j,i) if(hld.dist(i,j) == K) check(i,j);
    //for(auto a : base) cout << a << endl;
    if(cnt == N-1){
        cout << "Yes\n";
        cout << "?";
        cout << " " << (N-1);
        for(int i=1; i<N; i++){
            auto [u,v] = query[i];
            cout << " " << (u+1) << " " << (v+1);
        } cout << endl;
        vector<i64> T(N);
        for(int i=1; i<N; i++) cin >> T[i];
        vector<i64> ans(N);
        for(i64 i=1; i<N; i++){
            for(i64 j=1; j<N; j++) if(base[i].test(N+j)){
                ans[i] ^= T[j];
            }
        }
        cout << "!";
        for(int i=1; i<N; i++) cout << " " << ans[i];
        cout << endl;
    } else {
        cout << "No\n";
    }
}

int main(){
    ios::sync_with_stdio(false); cin.tie(nullptr);
    testcase();
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3872kb

input:

4 1
1 2
2 3
2 4
1 3 2

output:

Yes
? 3 2 1 3 2 4 2
! 1 2 3

result:

ok OK 3 numbers

Test #2:

score: 0
Accepted
time: 1ms
memory: 3592kb

input:

5 2
1 2
2 3
3 4
3 5
1 4 2 3

output:

Yes
? 4 3 1 5 4 4 2 5 2
! 4 5 3 2

result:

ok OK 4 numbers

Test #3:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

6 2
1 2
2 3
3 4
4 5
4 6

output:

No

result:

ok Correct

Test #4:

score: -100
Runtime Error

input:

250 1
108 84
37 129
33 68
131 135
26 173
186 25
35 104
78 123
52 115
239 44
166 149
127 210
185 212
246 64
249 143
137 101
82 209
244 29
15 242
20 62
243 151
81 10
42 159
65 71
71 105
166 192
214 225
97 87
86 208
43 60
235 54
77 107
28 147
195 2
45 153
104 180
63 250
205 165
220 206
24 92
12 41
233 ...

output:


result: