QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#801566 | #9798. Safety First | ucup-team135 | TL | 2982ms | 728648kb | C++20 | 10.8kb | 2024-12-07 02:30:02 | 2024-12-07 02:30:03 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
mt19937 rnd;
#define app push_back
#define all(x) (x).begin(),(x).end()
#ifdef LOCAL
#define debug(...) [](auto...a){ ((cout << a << ' '), ...) << endl;}(#__VA_ARGS__, ":", __VA_ARGS__)
#define debugv(v) do {cout<< #v <<" : {"; for(int izxc=0;izxc<v.size();++izxc) {cout << v[izxc];if(izxc+1!=v.size()) cout << ","; }cout <<"}"<< endl;} while(0)
#else
#define debug(...)
#define debugv(v)
#endif
#define lob(a,x) lower_bound(all(a),x)
#define upb(a,x) upper_bound(all(a),x)
const int MOD = 998244353;
const long long MOD2 = (long long) MOD * MOD;
const int root = 3;
const int alim = 64; // Bound for using O(n^2) polynomial mult
int modpow(int b, int e) {
int ans = 1;
for (; e; b = (long long) b * b % MOD, e /= 2)
if (e & 1) ans = (long long) ans * b % MOD;
return ans;
}
const int MODinv = 2 - MOD; // pow(-MOD, -1, 2**32)
inline int m_reduce(long long x) {
int m = x * MODinv;
return (x>>32) - (((long long) m * MOD) >> 32);
}
const int r2 = modpow(2, 64);
inline int m_transform(int x) {
return m_reduce((long long)x * r2);
}
inline int m_add(int x, int y) {
int z = x + y;
return z < 0 ? z + MOD : z - MOD;
}
inline int m_sub(int x, int y) {
int z = x - y;
return z < 0 ? z + MOD : z - MOD;
}
inline int m_mult(int x, int y) {
return m_reduce((long long) x * y);
}
vector<int> rt = {1};
vector<int> transformed_rt;
vector<int> transformed_rt2;
template<int a>
void transform(vector<int> &P) {
int m = P.size();
int n = m / a;
int size = rt.size();
while (2 * size < n) {
rt.resize(n / 2);
int r = modpow(root, MOD / (4 * size));
for (int i = 0; i < size; ++i)
rt[i + size] = (long long) r * rt[i] % MOD;
size *= 2;
}
// For montgomery
for (int i = transformed_rt.size(); i < rt.size(); ++i) {
transformed_rt.resize(rt.size());
transformed_rt[i] = m_transform(rt[i]);
transformed_rt2.resize(rt.size());
transformed_rt2[i] = (unsigned int) MODinv * transformed_rt[i];
}
int k = n;
while (k >= 4) k /= 4;
if (k == 2) {
int step = n * a;
int half_step = step / 2;
for (int j1 = 0; j1 < half_step; ++j1) {
int j2 = j1 + half_step;
int diff = m_sub(P[j1], P[j2]);
P[j1] = m_add(P[j1], P[j2]);
P[j2] = diff;
}
k = n/2;
} else {
k = n;
}
for (; k > 1; k /= 4) {
for (int i = 0; i < n/k; ++i) {
int step = k * a;
int half_step = step / 2;
int quarter_step = half_step / 2;
int R20 = transformed_rt2[2 * i];
int RR0 = transformed_rt[2 * i];
int R21 = transformed_rt2[2 * i + 1];
int RR1 = transformed_rt[2 * i + 1];
int R2 = transformed_rt2[i];
int RR = transformed_rt[i];
int j1 = i * step;
int j2 = j1 + quarter_step;
int j3 = j2 + quarter_step;
int j4 = j3 + quarter_step;
for (int j = 0; j < quarter_step; ++j, ++j1, ++j2, ++j3, ++j4) {
int z0;
{
int z = P[j3];
int m = (unsigned int) R2 * z;
z0 = ((long long) z * RR - (long long) m * MOD) >> 32;
}
int z1;
{
int z = P[j4];
int m = (unsigned int) R2 * z;
z1 = ((long long) z * RR - (long long) m * MOD) >> 32;
}
int sum0 = m_add(P[j1], z0);
int diff0 = m_sub(P[j1], z0);
int sum1 = P[j2] + z1;
int diff1 = P[j2] - z1;
// [sum0, sum1, diff0, diff1]
int zz0;
{
int z = sum1;
int m = (unsigned int) R20 * z;
zz0 = ((long long) z * RR0 - (long long) m * MOD) >> 32;
}
int zz1;
{
int z = diff1;
int m = (unsigned int) R21 * z;
zz1 = ((long long) z * RR1 - (long long) m * MOD) >> 32;
}
P[j1] = m_add(sum0, zz0);
P[j2] = m_sub(sum0, zz0);
P[j3] = m_add(diff0, zz1);
P[j4] = m_sub(diff0, zz1);
}
}
}
for (int i = 0; i < m; ++i)
if (P[i] < 0) P[i] += MOD;
}
template<int a>
void inverse_transform(vector<int> &P) {
int m = P.size();
int n = m / a;
int n_inv = m_transform(modpow(n, MOD - 2));
vector<int> rev(n);
for (int i = 1; i < n; ++i) {
rev[i] = rev[i / 2] / 2 + (i & 1) * n / 2;
}
// P = [p * n_inv for p in P]
for (int i = 0; i < m; ++i)
P[i] = m_mult(n_inv, P[i]);
// P = [P[a * rev[i // a] + (i % a)] for i in range(m)]
for (int i = 1; i < n; ++i)
if (i < rev[i])
swap_ranges(P.begin() + a * i, P.begin() + a * i + a, P.begin() + a * rev[i]);
// P = [P[-a * (i // a) + (i % a)] for i in range(m)]
for (int i = 1; i < n/2; ++i)
swap_ranges(P.begin() + a * i, P.begin() + a * i + a, P.begin() + a * (n - i));
transform<a>(P);
// P = [P[a * rev[i // a] + (i % a)] for i in range(m)]
for (int i = 1; i < n; ++i)
if (i < rev[i])
swap_ranges(P.begin() + a * i, P.begin() + a * i + a, P.begin() + a * rev[i]);
}
template<int a>
void fast_polymult_mod(vector<int> &P, vector<int> &Q) {
int m = P.size();
int n = m / a;
transform<a>(P);
transform<a>(Q);
vector<int> &PQ = P;
for (int i = 0; i < n; ++i) {
vector<unsigned long long> res(2 * a);
for (int j = 0; j < a; ++j) {
if (j >= 10 && j % 9 == 8)
for (int k = j; k < j + a - 10; ++k)
res[k] -= (res[k] >> 63) * 9 * MOD2;
for (int k = 0; k < a; ++k)
res[j + k] += (long long) P[i * a + j] * Q[i * a + k];
}
int c = rt[i/2];
if (i & 1) c = MOD - c;
for (int j = 0; j < a; ++j)
PQ[i * a + j] = (res[j] + c * (res[j + a] % MOD)) % MOD;
}
inverse_transform<a>(PQ);
}
template <size_t... N>
void work(std::index_sequence<N...>, int x, std::vector<int>& a, std::vector<int>& b) {
static void (*ptrs[])(std::vector<int>&, std::vector<int>&) = {&fast_polymult_mod<N+1>...};
ptrs[x - 1](a, b);
}
void fast_polymult(vector<int> &P, vector<int> &Q) {
int m1 = P.size();
int m2 = Q.size();
int res_len = m1 + m2 - 1;
int b = 1;
while ((alim << b) < res_len) ++b;
int a = ((res_len - 1) >> b) + 1;
int m = a << b;
P.resize(m);
Q.resize(m);
// Call fast_polymult_mod<a>(P, Q);
work(std::make_index_sequence<alim>{}, a, P, Q);
P.resize(res_len);
}
#define int long long
vector<int> operator *(vector<int> v3,vector<int> v4)
{
vector<int32_t> v1(v3.size()),v2(v4.size());for(int i=0;i<v1.size();++i) v1[i]=v3[i]; for(int i=0;i<v2.size();++i) v2[i]=v4[i];
v1.reserve(v1.size()+v2.size());v2.reserve(v1.size()+v2.size());
fast_polymult(v1,v2);
vector<int> res(v1.size());
for(int i=0;i<v1.size();++i) res[i]=v1[i];
return res;
}
const int p=998244353;
int po(int a,int b) {if(b==0) return 1; if(b==1) return a; if(b%2==0) {int u=po(a,b/2);return (u*1LL*u)%p;} else {int u=po(a,b-1);return (a*1LL*u)%p;}}
int inv(int x) {return po(x,p-2);}
const int B=2005;
const int maxn=2*B;
int f[B][B];
int fact[maxn];int invf[maxn];
vector<int> rev(vector<int> A)
{
int n=A.size();
vector<int> v1(n),v2(n+1);
for(int i=0;i<n;++i) {v1[i]=(A[i]*fact[i])%p;}
for(int diff=0;diff<n;++diff) {v2[n-diff]=(diff%2==0 ? invf[diff] : (p-invf[diff])%p);}
vector<int> v3=v1*v2;
vector<int> B(n);
for(int i=0;i<n;++i)
{
B[i]=(v3[n+i]*invf[i])%p;
}
return B;
}
vector<int> rev2(vector<int> A)
{
int n=A.size();
vector<int> v1(n),v2(n+1);
for(int i=0;i<n;++i) {v1[i]=(A[i]*fact[i])%p;}
for(int diff=0;diff<n;++diff) {v2[n-diff]=(invf[diff]);}
vector<int> v3=v1*v2;
vector<int> B(n);
for(int i=0;i<n;++i)
{
B[i]=(v3[n+i]*invf[i])%p;
}
return B;
}
int h[maxn][maxn];int Q[maxn][maxn];
int res[maxn][maxn];
int C[maxn][maxn];
int32_t main()
{
ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
for(int i=0;i<maxn;++i)
{
for(int j=0;j<=i;++j)
{
if(j==0 || j==i) {C[i][j]=1;continue;}
C[i][j]=C[i-1][j]+C[i-1][j-1];if(C[i][j]>=p) C[i][j]-=p;
}
}
fact[0]=1; for(int i=1;i<maxn;++i) {fact[i]=(fact[i-1]*i)%p;} for(int i=0;i<maxn;++i) {invf[i]=inv(fact[i]);}
f[0][0]=1;
for(int d=B-1;d>=1;--d)
{
for(int nx=B-1;nx>=0;--nx)
{
for(int nz=(B-1)/d;nz>=0;--nz)
{
if(nx+d+1<B && nz+1<B)
{
f[nx+d+1][nz+1]-=f[nx][nz];if(f[nx+d+1][nz+1]<0) f[nx+d+1][nz+1]+=p;
}
}
}
vector<int> AA,BB;
for(int nx=0;nx<B-d;++nx)
{
AA.clear();BB.clear();
int deg=(B-1)/d;
for(int i=0;i<deg;++i)
{
AA.app(f[nx][i]);
}
while(!AA.empty() && AA.back()==0) {AA.pop_back();}
if(AA.empty()) continue;
BB=rev(AA);
for(int i=0;i<BB.size();++i)
{
if(i+d<B && nx+d<B)
{
h[nx+d][i+d]+=BB[i];if(h[nx+d][i+d]>=p) h[nx+d][i+d]-=p;
}
if(i+d-1<B && nx+d<B)
{
h[nx+d][i+d-1]-=BB[i];if(h[nx+d][i+d-1]<0) h[nx+d][i+d-1]+=p;
}
}
}
}
vector<int> AA,BB;
for(int nx=0;nx<B;++nx)
{
AA.clear();BB.clear();
int deg=B;
for(int i=0;i<deg;++i)
{
AA.app(h[nx][i]);
}
while(!AA.empty() && AA.back()==0) {AA.pop_back();}
if(AA.empty()) continue;
BB=rev2(AA);
for(int i=0;i<BB.size();++i)
{
h[nx][i]=BB[i];
}
}
Q[0][0]=1;
for(int d=B-1;d>=1;--d)
{
for(int nx=0;nx<B-d;++nx)
{
for(int nz=(B-1)/d;nz>=0;--nz)
{
if(nx+d<B && nz+1<B)
{
Q[nx+d][nz+1]+=Q[nx][nz];if(Q[nx+d][nz+1]>=p) Q[nx+d][nz+1]-=p;
}
}
}
}
vector<int> h1(2*B*B),Q1(2*B*B);
for(int i=0;i<B;++i)
{
for(int j=0;j<B;++j)
{
h1[2*B*i+j]=h[i][j];
Q1[2*B*i+j]=Q[i][j];
}
}
//vector<int> h2(B*B),h3(B*B),Q2(B*B),Q3(B*B);
//for(int i=0;i<B*B;++i) {h2[i]=h1[i];h3[i]=h1[i+B*B];Q2[i]=Q1[i];Q3[i]=Q1[i+B*B];}
vector<int> res1=h1*Q1;
for(int i=0;i<B;++i)
{
for(int j=0;j<B;++j)
{
int el=2*i*B+j;
res[i][j]=res1[el];
}
}
int t;cin>>t;
while(t--)
{
int n,m;cin>>n>>m;
int answ=0;
for(int d=1;d<=n;++d)
{
answ+=res[m][d]*C[n-1][d-1];answ%=p;
}
cout<<answ<<'\n';
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 2940ms
memory: 716224kb
input:
3 1 3 2 3 3 3
output:
1 4 10
result:
ok 3 number(s): "1 4 10"
Test #2:
score: 0
Accepted
time: 2901ms
memory: 727380kb
input:
1 2000 2000
output:
204576309
result:
ok 1 number(s): "204576309"
Test #3:
score: 0
Accepted
time: 2982ms
memory: 728648kb
input:
100000 10 1752 19 171 17 1105 14 687 28 204 3 1215 19 1610 30 764 6 537 42 656 41 943 36 795 28 795 9 740 28 1138 20 173 6 1160 21 1409 18 851 28 301 30 782 4 685 10 1792 15 868 42 1341 10 1361 4 1278 28 61 30 1943 44 1199 23 1398 25 1199 34 951 14 866 4 1469 4 1060 30 567 22 1805 50 1566 39 537 25 ...
output:
268773463 258398110 748990072 944261206 28848324 1415323 440426423 133920075 975812871 422247730 443385987 269602349 516611815 864790546 323341799 910043327 459119274 782783928 662557529 928314001 831289605 119493832 694722015 789549109 307680352 415179306 774755603 202375583 226239893 400583167 282...
result:
ok 100000 numbers
Test #4:
score: -100
Time Limit Exceeded
input:
100000 98 437 75 1936 82 522 51 1166 67 1452 96 618 96 1436 91 1173 100 1242 69 1280 74 125 73 869 77 811 73 1694 56 1550 65 1857 75 941 79 538 68 1057 71 907 90 1925 86 785 65 1658 60 1044 67 804 56 1428 53 127 97 197 57 680 81 1636 64 1200 79 790 92 1389 91 340 78 411 58 1308 70 952 90 85 91 1397 ...
output:
742593766 791182960 260925178 423870975 954765117 233028625 298697835 166927245 254797666 165773109 608132753 508968899 726675390 951161570 757337043 102586936 115466851 787049646 41560035 882840713 26484816 898027489 538836045 445749214 446547003 117114483 182473853 404451392 352694143 378208316 32...