QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#795904 | #9804. Guess the Polygon | ucup-team3099# | WA | 2ms | 3832kb | C++23 | 3.7kb | 2024-12-01 03:57:50 | 2024-12-01 03:57:50 |
Judging History
answer
#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <cassert>
#include <algorithm>
std::mt19937 rng((int) std::chrono::steady_clock::now().time_since_epoch().count());
int main() {
int t;
std::cin >> t;
while(t--) {
int n;
std::cin >> n;
std::vector<int> x(n), y(n);
for(int i = 0; i < n; i++) {
std::cin >> x[i] >> y[i];
}
std::sort(x.begin(), x.end());
x.erase(std::unique(x.begin(), x.end()), x.end());
long double area = 0;
if((int) x.size() == n) {
std::vector<long double> sesh(n, 0);
for(int i = 1; i+1 < n; i++) {
std::cout << "? " << x[i] << ' ' << 1 << std::endl;
long long p, q;
std::cin >> p >> q;
sesh[i] = p / (long double) q;
}
for(int i = 0; i + 1 < n; i++) {
area += (sesh[i] + sesh[i+1]) / 2 * (x[i+1] - x[i]);
}
} else {
for(int i = 0; i+1 < (int) x.size(); i++) {
std::cout << "? " << x[i] + x[i+1] << ' ' << 2 << std::endl;
long long p, q;
std::cin >> p >> q;
area += p / (long double) q * (x[i+1] - x[i]);
}
}
int p = (int) (area * 2 + 0.5);
int q = 2;
if(p % 2 == 0) {
p /= 2, q /= 2;
}
std::cout << "! " << p << ' ' << q << std::endl;
}
}
/*
NEVER FORGET TO:
Look at the problem's constraints before coding.
How to cheese cf:
Find a lower bound or upper bound for the problem. Have faith that it is the answer of the problem.
If it isn't the answer, have more faith or change to another bound god by looking for a better bound.
Trust guesses. Who has time to think? If people in div2 AC the problem it requires no proof since people don't prove things.
You must draw cases. Thinking gets you nowhere, so draw cases and reach illogical conclusions from them.
Sometimes drawing cases is bad because it takes too much time. Faster is to not think at all and just code a bruteforce solution.
This is called "law of small numbers". If something works for small numbers, surely it works for big numbers.
https://en.wikipedia.org/wiki/Faulty_generalization#Hasty_generalization don't mind the "faulty" part of it, in competitive programming mistakes are lightly punished
Don't think about them being right or not, cf is a battle of intuition only.
Be as stupid as possible in implementation. Trying to be smart is an easy way to get WA.
Think about 2x2 cases for matrix problems and hope that everything works for the general case.
Find a necessary condition and trust it to be sufficient. They're basically the same thing.
Heuristics might speed up your code. Forget about complexity, it's only about ACing and not proving that your solution is good.
For paths in a grid starting at (1, i) or something like that, assume that they never cross and do D&C
Consider doing problems in reverse order of queries/updates
For combinatorics problems, consider symmetry
For problems that are similar to past problems, think about the differences betweem it and the current problem.
Sometimes the difference makes no difference. Sometimes it does.
General strategy (MUST DO):
Try to solve the problem with more restricted constraints.
About testing:
Test n=1, a[i]=1, a[i]=n, etc. Basically, test low values. No need to test if pretests are strong, but if you get WA it's good.
This isn't a joke. Do it if you get stuck. It's shit practice in my opinion, but do it if you want AC.
*/
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 3572kb
input:
2 4 3 0 1 3 1 1 0 0 1 1 1 1 3 0 0 999 1000 1000 999 1999 1000
output:
? 1 2 ? 4 2 ! 3 1 ? 999 1 ! 1999 2
result:
ok correct! (2 test cases)
Test #2:
score: 0
Accepted
time: 1ms
memory: 3576kb
input:
9 4 1 1 1 3 3 0 0 0 3 2 1 2 4 0 0 1 3 1 1 3 0 1 2 3 2 4 0 0 3 0 1 2 1 1 1 2 1 2 4 0 0 3 0 1 2 1 1 1 1 1 2 4 0 0 3 0 1 1 1 2 1 2 1 1 3 1000 0 0 0 0 1000 500 1 4 0 0 1000 0 1000 1000 0 1000 1000 1 5 0 1 1000 1000 1000 0 0 1000 1 0 1999 2 1000 1 9 4 1000 3 1 2 1000 3 1000 1 1 2 1 0 0 1 1000 4 0 500 1 1...
output:
? 1 2 ? 4 2 ! 5 2 ? 1 2 ? 4 2 ! 7 2 ? 1 2 ? 4 2 ! 3 2 ? 1 2 ? 4 2 ! 2 1 ? 1 2 ? 4 2 ! 5 2 ? 1000 2 ! 500000 1 ? 1000 2 ! 1000000 1 ? 1 2 ? 1001 2 ! 1999999 2 ? 1 2 ? 3 2 ? 5 2 ? 7 2 ! 4003 2
result:
ok correct! (9 test cases)
Test #3:
score: 0
Accepted
time: 2ms
memory: 3832kb
input:
78 8 951 614 927 614 957 614 957 604 937 614 942 619 951 610 927 604 10 1 25 2 21 2 10 1 7 562 260 602 250 582 255 587 260 602 260 562 250 577 260 10 1 15 2 15 2 10 1 3 454 98 494 68 455 68 117 4 3 526 589 566 559 527 559 117 4 3 854 496 854 466 894 466 15 1 3 797 264 827 254 857 264 10 1 3 719 737 ...
output:
? 1864 2 ? 1879 2 ? 1893 2 ? 1908 2 ! 317 1 ? 1139 2 ? 1159 2 ? 1169 2 ? 1189 2 ! 375 1 ? 455 1 ! 585 1 ? 527 1 ! 585 1 ? 1748 2 ! 600 1 ? 827 1 ! 300 1 ? 1478 2 ! 600 1 ? 162 1 ! 400 1 ? 1489 2 ? 1499 2 ? 1544 2 ! 275 1 ? 1869 2 ? 1879 2 ? 1889 2 ? 1899 2 ? 1909 2 ? 1919 2 ? 1929 2 ? 1939 2 ? 1949 ...
result:
ok correct! (78 test cases)
Test #4:
score: -100
Wrong Answer
time: 0ms
memory: 3576kb
input:
34 24 123 815 168 800 133 795 27 827 153 805 28 830 178 780 138 810 78 830 192 772 148 790 88 810 43 825 183 795 103 805 163 785 118 800 93 825 63 835 73 815 58 820 198 790 48 840 108 820 10 3 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 95 6 15 2 15 1 24...
output:
? 28 1 ? 43 1 ? 48 1 ? 58 1 ? 63 1 ? 73 1 ? 78 1 ? 88 1 ? 93 1 ? 103 1 ? 108 1 ? 118 1 ? 123 1 ? 133 1 ? 138 1 ? 148 1 ? 153 1 ? 163 1 ? 168 1 ? 178 1 ? 183 1 ? 192 1 ! 1925 1 ? 54 1 ? 69 1 ? 74 1 ? 84 1 ? 89 1 ? 99 1 ? 104 1 ? 114 1 ? 119 1 ? 129 1 ? 134 1 ? 144 1 ? 149 1 ? 159 1 ? 164 1 ? 174 1 ? ...
result:
wrong answer the answer is incorrect, expect: 35226/1, find: 721407/2 (test case 27)