QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#795893#9804. Guess the Polygonucup-team4435#RE 5ms3624kbC++236.7kb2024-12-01 03:30:372024-12-01 03:30:38

Judging History

This is the latest submission verdict.

  • [2024-12-01 03:30:38]
  • Judged
  • Verdict: RE
  • Time: 5ms
  • Memory: 3624kb
  • [2024-12-01 03:30:37]
  • Submitted

answer

#include "bits/stdc++.h"


#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define pb push_back
#define eb emplace_back
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define each(x, a) for (auto &x : a)
#define ar array
#define vec vector
#define range(i, n) rep(i, n)

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using str = string;
using pi = pair<int, int>;
using pl = pair<ll, ll>;

using vi = vector<int>;
using vl = vector<ll>;
using vpi = vector<pair<int, int>>;
using vvi = vector<vi>;

int Bit(int mask, int b) { return (mask >> b) & 1; }

template<class T>
bool ckmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool ckmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return true;
    }
    return false;
}

// [l, r)
template<typename T, typename F>
T FindFirstTrue(T l, T r, const F &predicat) {
    --l;
    while (r - l > 1) {
        T mid = l + (r - l) / 2;
        if (predicat(mid)) {
            r = mid;
        } else {
            l = mid;
        }
    }
    return r;
}


template<typename T, typename F>
T FindLastFalse(T l, T r, const F &predicat) {
    return FindFirstTrue(l, r, predicat) - 1;
}

const int INFi = 2e9;
const ll INF = 2e18;

template<class T>
class Frac {
public:
    T num;
    T den;
    Frac(T num, T den) : num(num), den(den) {
        if (den < 0) {
            den = -den;
            num = -num;
        }
        normalize();
    }
    Frac() : Frac(0, 1) {}
    Frac(T num) : Frac(num, 1) {}
    double toDouble() const {
        return 1.0 * num / den;
    }
    void normalize() {
        assert(den > 0);
        ll g = abs(gcd(num, den));
        num /= g;
        den /= g;
    }

    Frac &operator+=(const Frac &rhs) {
        num = num * rhs.den + rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator-=(const Frac &rhs) {
        num = num * rhs.den - rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator*=(const Frac &rhs) {
        num *= rhs.num;
        den *= rhs.den;
        return *this;
    }
    Frac &operator/=(const Frac &rhs) {
        num *= rhs.den;
        den *= rhs.num;
        if (den < 0) {
            num = -num;
            den = -den;
        }
        return *this;
    }
    friend Frac operator+(Frac lhs, const Frac &rhs) {
        return lhs += rhs;
    }
    friend Frac operator-(Frac lhs, const Frac &rhs) {
        return lhs -= rhs;
    }
    friend Frac operator*(Frac lhs, const Frac &rhs) {
        return lhs *= rhs;
    }
    friend Frac operator/(Frac lhs, const Frac &rhs) {
        return lhs /= rhs;
    }
    friend Frac operator-(const Frac &a) {
        return Frac(-a.num, a.den);
    }
    friend bool operator==(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den == rhs.num * lhs.den;
    }
    friend bool operator!=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den != rhs.num * lhs.den;
    }
    friend bool operator<(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den < rhs.num * lhs.den;
    }
    friend bool operator>(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den > rhs.num * lhs.den;
    }
    friend bool operator<=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den <= rhs.num * lhs.den;
    }
    friend bool operator>=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den >= rhs.num * lhs.den;
    }
};

using Fraction = Frac<ll>;

Fraction ask(ll p, ll q) {
    cout << "? " << p << " " << q << endl;
    ll r, s; cin >> r >> s;
    return {r, s};
}

void solve() {
    map<int, int> cnt;
    int n; cin >> n;
    rep(_, n) {
        int x, y; cin >> x >> y;
        cnt[x]++;
    }

    vector<pair<ll, ll>> a(all(cnt));
    if (a.size() <= 1) {
        cout << "! 0 1" << endl;
        return;
    }

    Fraction result(0, 1);

    auto Add = [&] (Fraction len1, Fraction len2, Fraction xdiff, Fraction ladd, Fraction radd) {
        xdiff.normalize();
        assert(xdiff.num != 0);
        Fraction L = len1;
        if (ladd.num != 0) {
            auto df = len1 - len2;
            df.normalize();
            df /= xdiff;
            df.normalize();
            df *= (xdiff + ladd);
            df.normalize();
            L = df + len2;
            L.normalize();
        }
        Fraction R = len2;
        if (radd.num != 0) {
            auto df = len2 - len1;
            df.normalize();
            df /= xdiff;
            df.normalize();
            df *= (xdiff + radd);
            df.normalize();
            R = df + len1;
            R.normalize();
        }
        auto h = xdiff + ladd + radd;
        h /= 2;
        h.normalize();
        auto res = (L + R) * h;
        res.normalize();
        result += res;
        result.normalize();
    };


    Fraction len1, ladd, prv;
    if (a[0].second == 1) {
        len1 = {0, 1};
        ladd = {0, 1};
        prv = {a[0].first, 1};
    } else {
        len1 = ask(a[0].first, 1);
        ladd = {0, 1};
        prv = {a[0].first, 1};
    }

    for(int i = 1; i + 1 < (int)a.size(); ++i) {
        if (a[i].second == 1) {
            Fraction nx = {a[i].first, 1};
            Fraction cur = ask(a[i].first, 1);

            Add(len1, cur, nx - prv, ladd, 0);

            prv = nx;
            ladd = {0, 1};
            len1 = cur;
            continue;
        }
        Fraction radd = {1, 4};
        Fraction nx = {a[i].first, 1};
        Fraction rp = nx - radd;
        rp.normalize();

        Fraction len2 = ask(rp.num, rp.den);

        Fraction xdiff = rp - prv;
        Add(len1, len2, xdiff, ladd, radd);

        prv = nx + radd;
        ladd = radd;
        ladd.normalize();
        prv.normalize();
        len1 = ask(prv.num, prv.den);
    }
    {
        Fraction radd = {0, 1};
        Fraction nx = {a.back().first, 1};
        Fraction len2 = {0, 1};
        if (a.back().second > 1) {
            len2 = ask(nx.num, nx.den);
        }

        Add(len1, len2, nx - prv, ladd, radd);
    }
    cout << "! " << result.num << ' ' << result.den << endl;
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(12) << fixed;
    int t = 1;
    cin >> t;

    rep(i, t) {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3620kb

input:

2
4
3 0
1 3
1 1
0 0
3 2
7 4
3
0 0
999 1000
1000 999
1999 1000

output:

? 3 4
? 5 4
! 3 1
? 999 1
! 1999 2

result:

ok correct! (2 test cases)

Test #2:

score: 0
Accepted
time: 1ms
memory: 3624kb

input:

9
4
1 1
1 3
3 0
0 0
9 4
7 8
4
0 0
1 3
1 1
3 0
3 4
21 8
4
0 0
3 0
1 2
1 1
3 4
7 8
4
0 0
3 0
1 2
1 1
3 2
7 8
4
0 0
3 0
1 1
1 2
3 4
7 4
3
1000 0
0 0
0 1000
1000 1
4
0 0
1000 0
1000 1000
0 1000
1000 1
1000 1
5
0 1
1000 1000
1000 0
0 1000
1 0
999 1
1000 1
1000 1
9
4 1000
3 1
2 1000
3 1000
1 1
2 1
0 0
1 1...

output:

? 3 4
? 5 4
! 5 2
? 3 4
? 5 4
! 7 2
? 3 4
? 5 4
! 3 2
? 3 4
? 5 4
! 2 1
? 3 4
? 5 4
! 5 2
? 0 1
! 500000 1
? 0 1
? 1000 1
! 1000000 1
? 0 1
? 1 1
? 1000 1
! 1999999 2
? 3 4
? 5 4
? 7 4
? 9 4
? 11 4
? 13 4
? 4 1
! 4003 2

result:

ok correct! (9 test cases)

Test #3:

score: 0
Accepted
time: 5ms
memory: 3600kb

input:

78
8
951 614
927 614
957 614
957 604
937 614
942 619
951 610
927 604
10 1
10 1
15 1
25 4
10 1
10 1
7
562 260
602 250
582 255
587 260
602 260
562 250
577 260
10 1
10 1
5 1
10 1
10 1
3
454 98
494 68
455 68
117 4
3
526 589
566 559
527 559
117 4
3
854 496
854 466
894 466
30 1
3
797 264
827 254
857 264
1...

output:

? 927 1
? 937 1
? 942 1
? 3803 4
? 3805 4
? 957 1
! 317 1
? 562 1
? 577 1
? 582 1
? 587 1
? 602 1
! 375 1
? 455 1
! 585 1
? 527 1
! 585 1
? 854 1
! 600 1
? 827 1
! 300 1
? 719 1
! 600 1
? 162 1
! 400 1
? 742 1
? 2987 4
? 2989 4
? 3007 4
? 3009 4
? 792 1
! 275 1
? 932 1
? 3747 4
? 3749 4
? 3767 4
? 3...

result:

ok correct! (78 test cases)

Test #4:

score: -100
Runtime Error

input:

34
24
123 815
168 800
133 795
27 827
153 805
28 830
178 780
138 810
78 830
192 772
148 790
88 810
43 825
183 795
103 805
163 785
118 800
93 825
63 835
73 815
58 820
198 790
48 840
108 820
10 3
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
95 6
15 2
15 1
24...

output:

? 28 1
? 43 1
? 48 1
? 58 1
? 63 1
? 73 1
? 78 1
? 88 1
? 93 1
? 103 1
? 108 1
? 118 1
? 123 1
? 133 1
? 138 1
? 148 1
? 153 1
? 163 1
? 168 1
? 178 1
? 183 1
? 192 1
! 1925 1
? 54 1
? 69 1
? 74 1
? 84 1
? 89 1
? 99 1
? 104 1
? 114 1
? 119 1
? 129 1
? 134 1
? 144 1
? 149 1
? 159 1
? 164 1
? 174 1
? ...

result: