QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#789765#8833. Equalizer Ehrmantrautucup-team004AC ✓116ms3712kbC++237.1kb2024-11-27 21:45:362024-11-27 21:45:37

Judging History

你现在查看的是最新测评结果

  • [2024-11-27 21:45:37]
  • 评测
  • 测评结果:AC
  • 用时:116ms
  • 内存:3712kb
  • [2024-11-27 21:45:36]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
using u128 = unsigned __int128;

template<class T>
constexpr T power(T a, u64 b, T res = 1) {
    for (; b != 0; b /= 2, a *= a) {
        if (b & 1) {
            res *= a;
        }
    }
    return res;
}

template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
    return u64(a) * b % P;
}

template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
    u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
    res %= P;
    return res;
}

constexpr i64 safeMod(i64 x, i64 m) {
    x %= m;
    if (x < 0) {
        x += m;
    }
    return x;
}

constexpr std::pair<i64, i64> invGcd(i64 a, i64 b) {
    a = safeMod(a, b);
    if (a == 0) {
        return {b, 0};
    }
    
    i64 s = b, t = a;
    i64 m0 = 0, m1 = 1;

    while (t) {
        i64 u = s / t;
        s -= t * u;
        m0 -= m1 * u;
        
        std::swap(s, t);
        std::swap(m0, m1);
    }
    
    if (m0 < 0) {
        m0 += b / s;
    }
    
    return {s, m0};
}

template<std::unsigned_integral U, U P>
struct ModIntBase {
public:
    constexpr ModIntBase() : x(0) {}
    template<std::unsigned_integral T>
    constexpr ModIntBase(T x_) : x(x_ % mod()) {}
    template<std::signed_integral T>
    constexpr ModIntBase(T x_) {
        using S = std::make_signed_t<U>;
        S v = x_ % S(mod());
        if (v < 0) {
            v += mod();
        }
        x = v;
    }
    
    constexpr static U mod() {
        return P;
    }
    
    constexpr U val() const {
        return x;
    }
    
    constexpr ModIntBase operator-() const {
        ModIntBase res;
        res.x = (x == 0 ? 0 : mod() - x);
        return res;
    }
    
    constexpr ModIntBase inv() const {
        return power(*this, mod() - 2);
    }
    
    constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
        x = mulMod<mod()>(x, rhs.val());
        return *this;
    }
    constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
        x += rhs.val();
        if (x >= mod()) {
            x -= mod();
        }
        return *this;
    }
    constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
        x -= rhs.val();
        if (x >= mod()) {
            x += mod();
        }
        return *this;
    }
    constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
        return *this *= rhs.inv();
    }
    
    friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
        lhs *= rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
        lhs += rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
        lhs -= rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
        lhs /= rhs;
        return lhs;
    }
    
    friend constexpr std::istream &operator>>(std::istream &is, ModIntBase &a) {
        i64 i;
        is >> i;
        a = i;
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
        return os << a.val();
    }
    
    friend constexpr bool operator==(const ModIntBase &lhs, const ModIntBase &rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr std::strong_ordering operator<=>(const ModIntBase &lhs, const ModIntBase &rhs) {
        return lhs.val() <=> rhs.val();
    }
    
private:
    U x;
};

template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;

struct Barrett {
public:
    Barrett(u32 m_) : m(m_), im((u64)(-1) / m_ + 1) {}

    constexpr u32 mod() const {
        return m;
    }

    constexpr u32 mul(u32 a, u32 b) const {
        u64 z = a;
        z *= b;
        
        u64 x = u64((u128(z) * im) >> 64);
        
        u32 v = u32(z - x * m);
        if (m <= v) {
            v += m;
        }
        return v;
    }

private:
    u32 m;
    u64 im;
};

template<u32 Id>
struct DynModInt {
public:
    constexpr DynModInt() : x(0) {}
    template<std::unsigned_integral T>
    constexpr DynModInt(T x_) : x(x_ % mod()) {}
    template<std::signed_integral T>
    constexpr DynModInt(T x_) {
        int v = x_ % int(mod());
        if (v < 0) {
            v += mod();
        }
        x = v;
    }
    
    constexpr static void setMod(u32 m) {
        bt = m;
    }
    
    static u32 mod() {
        return bt.mod();
    }
    
    constexpr u32 val() const {
        return x;
    }
    
    constexpr DynModInt operator-() const {
        DynModInt res;
        res.x = (x == 0 ? 0 : mod() - x);
        return res;
    }
    
    constexpr DynModInt inv() const {
        auto v = invGcd(x, mod());
        assert(v.first == 1);
        return v.second;
    }
    
    constexpr DynModInt &operator*=(const DynModInt &rhs) & {
        x = bt.mul(x, rhs.val());
        return *this;
    }
    constexpr DynModInt &operator+=(const DynModInt &rhs) & {
        x += rhs.val();
        if (x >= mod()) {
            x -= mod();
        }
        return *this;
    }
    constexpr DynModInt &operator-=(const DynModInt &rhs) & {
        x -= rhs.val();
        if (x >= mod()) {
            x += mod();
        }
        return *this;
    }
    constexpr DynModInt &operator/=(const DynModInt &rhs) & {
        return *this *= rhs.inv();
    }
    
    friend constexpr DynModInt operator*(DynModInt lhs, const DynModInt &rhs) {
        lhs *= rhs;
        return lhs;
    }
    friend constexpr DynModInt operator+(DynModInt lhs, const DynModInt &rhs) {
        lhs += rhs;
        return lhs;
    }
    friend constexpr DynModInt operator-(DynModInt lhs, const DynModInt &rhs) {
        lhs -= rhs;
        return lhs;
    }
    friend constexpr DynModInt operator/(DynModInt lhs, const DynModInt &rhs) {
        lhs /= rhs;
        return lhs;
    }
    
    friend constexpr std::istream &operator>>(std::istream &is, DynModInt &a) {
        i64 i;
        is >> i;
        a = i;
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const DynModInt &a) {
        return os << a.val();
    }
    
    friend constexpr bool operator==(const DynModInt &lhs, const DynModInt &rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr std::strong_ordering operator<=>(const DynModInt &lhs, const DynModInt &rhs) {
        return lhs.val() <=> rhs.val();
    }
    
private:
    u32 x;
    static Barrett bt;
};

template<u32 Id>
Barrett DynModInt<Id>::bt = 998244353;

using Z = ModInt<998244353>;

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n, m;
    std::cin >> n >> m;
    
    Z ans = 0;
    for (int i = 1; i <= m; i++) {
        ans += power(Z(m), n) * 2;
        ans -= power(Z(i - 1), n) * 2;
    }
    ans -= power(Z(m), n);
    std::cout << ans << "\n";
    
    return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3676kb

input:

1 3

output:

9

result:

ok 1 number(s): "9"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

2 2

output:

10

result:

ok 1 number(s): "10"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

69 42

output:

608932821

result:

ok 1 number(s): "608932821"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3668kb

input:

102 156

output:

748401290

result:

ok 1 number(s): "748401290"

Test #5:

score: 0
Accepted
time: 3ms
memory: 3660kb

input:

4646 95641

output:

89806680

result:

ok 1 number(s): "89806680"

Test #6:

score: 0
Accepted
time: 18ms
memory: 3580kb

input:

42849 215151

output:

242217237

result:

ok 1 number(s): "242217237"

Test #7:

score: 0
Accepted
time: 94ms
memory: 3668kb

input:

786416 794116

output:

472898000

result:

ok 1 number(s): "472898000"

Test #8:

score: 0
Accepted
time: 93ms
memory: 3652kb

input:

963852 789456

output:

353211048

result:

ok 1 number(s): "353211048"

Test #9:

score: 0
Accepted
time: 48ms
memory: 3660kb

input:

696969 424242

output:

787990158

result:

ok 1 number(s): "787990158"

Test #10:

score: 0
Accepted
time: 15ms
memory: 3660kb

input:

1000000 123456

output:

533491028

result:

ok 1 number(s): "533491028"

Test #11:

score: 0
Accepted
time: 116ms
memory: 3708kb

input:

1000000 1000000

output:

572586375

result:

ok 1 number(s): "572586375"

Test #12:

score: 0
Accepted
time: 85ms
memory: 3712kb

input:

123456 1000000

output:

486967129

result:

ok 1 number(s): "486967129"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3648kb

input:

789456 1

output:

1

result:

ok 1 number(s): "1"

Test #14:

score: 0
Accepted
time: 0ms
memory: 3648kb

input:

852516 2

output:

148946358

result:

ok 1 number(s): "148946358"

Test #15:

score: 0
Accepted
time: 7ms
memory: 3580kb

input:

1 953646

output:

40087733

result:

ok 1 number(s): "40087733"

Test #16:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

3 7686

output:

278212472

result:

ok 1 number(s): "278212472"

Extra Test:

score: 0
Extra Test Passed