QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#789765 | #8833. Equalizer Ehrmantraut | ucup-team004 | AC ✓ | 116ms | 3712kb | C++23 | 7.1kb | 2024-11-27 21:45:36 | 2024-11-27 21:45:37 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
using u128 = unsigned __int128;
template<class T>
constexpr T power(T a, u64 b, T res = 1) {
for (; b != 0; b /= 2, a *= a) {
if (b & 1) {
res *= a;
}
}
return res;
}
template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
return u64(a) * b % P;
}
template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
res %= P;
return res;
}
constexpr i64 safeMod(i64 x, i64 m) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
constexpr std::pair<i64, i64> invGcd(i64 a, i64 b) {
a = safeMod(a, b);
if (a == 0) {
return {b, 0};
}
i64 s = b, t = a;
i64 m0 = 0, m1 = 1;
while (t) {
i64 u = s / t;
s -= t * u;
m0 -= m1 * u;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
template<std::unsigned_integral U, U P>
struct ModIntBase {
public:
constexpr ModIntBase() : x(0) {}
template<std::unsigned_integral T>
constexpr ModIntBase(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr ModIntBase(T x_) {
using S = std::make_signed_t<U>;
S v = x_ % S(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static U mod() {
return P;
}
constexpr U val() const {
return x;
}
constexpr ModIntBase operator-() const {
ModIntBase res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr ModIntBase inv() const {
return power(*this, mod() - 2);
}
constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
x = mulMod<mod()>(x, rhs.val());
return *this;
}
constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
return *this *= rhs.inv();
}
friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, ModIntBase &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
return os << a.val();
}
friend constexpr bool operator==(const ModIntBase &lhs, const ModIntBase &rhs) {
return lhs.val() == rhs.val();
}
friend constexpr std::strong_ordering operator<=>(const ModIntBase &lhs, const ModIntBase &rhs) {
return lhs.val() <=> rhs.val();
}
private:
U x;
};
template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;
struct Barrett {
public:
Barrett(u32 m_) : m(m_), im((u64)(-1) / m_ + 1) {}
constexpr u32 mod() const {
return m;
}
constexpr u32 mul(u32 a, u32 b) const {
u64 z = a;
z *= b;
u64 x = u64((u128(z) * im) >> 64);
u32 v = u32(z - x * m);
if (m <= v) {
v += m;
}
return v;
}
private:
u32 m;
u64 im;
};
template<u32 Id>
struct DynModInt {
public:
constexpr DynModInt() : x(0) {}
template<std::unsigned_integral T>
constexpr DynModInt(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr DynModInt(T x_) {
int v = x_ % int(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static void setMod(u32 m) {
bt = m;
}
static u32 mod() {
return bt.mod();
}
constexpr u32 val() const {
return x;
}
constexpr DynModInt operator-() const {
DynModInt res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr DynModInt inv() const {
auto v = invGcd(x, mod());
assert(v.first == 1);
return v.second;
}
constexpr DynModInt &operator*=(const DynModInt &rhs) & {
x = bt.mul(x, rhs.val());
return *this;
}
constexpr DynModInt &operator+=(const DynModInt &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr DynModInt &operator-=(const DynModInt &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr DynModInt &operator/=(const DynModInt &rhs) & {
return *this *= rhs.inv();
}
friend constexpr DynModInt operator*(DynModInt lhs, const DynModInt &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr DynModInt operator+(DynModInt lhs, const DynModInt &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr DynModInt operator-(DynModInt lhs, const DynModInt &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr DynModInt operator/(DynModInt lhs, const DynModInt &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, DynModInt &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const DynModInt &a) {
return os << a.val();
}
friend constexpr bool operator==(const DynModInt &lhs, const DynModInt &rhs) {
return lhs.val() == rhs.val();
}
friend constexpr std::strong_ordering operator<=>(const DynModInt &lhs, const DynModInt &rhs) {
return lhs.val() <=> rhs.val();
}
private:
u32 x;
static Barrett bt;
};
template<u32 Id>
Barrett DynModInt<Id>::bt = 998244353;
using Z = ModInt<998244353>;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, m;
std::cin >> n >> m;
Z ans = 0;
for (int i = 1; i <= m; i++) {
ans += power(Z(m), n) * 2;
ans -= power(Z(i - 1), n) * 2;
}
ans -= power(Z(m), n);
std::cout << ans << "\n";
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3676kb
input:
1 3
output:
9
result:
ok 1 number(s): "9"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
2 2
output:
10
result:
ok 1 number(s): "10"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
69 42
output:
608932821
result:
ok 1 number(s): "608932821"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
102 156
output:
748401290
result:
ok 1 number(s): "748401290"
Test #5:
score: 0
Accepted
time: 3ms
memory: 3660kb
input:
4646 95641
output:
89806680
result:
ok 1 number(s): "89806680"
Test #6:
score: 0
Accepted
time: 18ms
memory: 3580kb
input:
42849 215151
output:
242217237
result:
ok 1 number(s): "242217237"
Test #7:
score: 0
Accepted
time: 94ms
memory: 3668kb
input:
786416 794116
output:
472898000
result:
ok 1 number(s): "472898000"
Test #8:
score: 0
Accepted
time: 93ms
memory: 3652kb
input:
963852 789456
output:
353211048
result:
ok 1 number(s): "353211048"
Test #9:
score: 0
Accepted
time: 48ms
memory: 3660kb
input:
696969 424242
output:
787990158
result:
ok 1 number(s): "787990158"
Test #10:
score: 0
Accepted
time: 15ms
memory: 3660kb
input:
1000000 123456
output:
533491028
result:
ok 1 number(s): "533491028"
Test #11:
score: 0
Accepted
time: 116ms
memory: 3708kb
input:
1000000 1000000
output:
572586375
result:
ok 1 number(s): "572586375"
Test #12:
score: 0
Accepted
time: 85ms
memory: 3712kb
input:
123456 1000000
output:
486967129
result:
ok 1 number(s): "486967129"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
789456 1
output:
1
result:
ok 1 number(s): "1"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
852516 2
output:
148946358
result:
ok 1 number(s): "148946358"
Test #15:
score: 0
Accepted
time: 7ms
memory: 3580kb
input:
1 953646
output:
40087733
result:
ok 1 number(s): "40087733"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
3 7686
output:
278212472
result:
ok 1 number(s): "278212472"
Extra Test:
score: 0
Extra Test Passed