QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#788365 | #8525. Mercenaries | ucup-team004 | WA | 0ms | 3856kb | C++23 | 14.9kb | 2024-11-27 16:42:14 | 2024-11-27 16:42:14 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
using u128 = unsigned __int128;
template<class T>
struct Point {
T x;
T y;
Point(const T &x_ = 0, const T &y_ = 0) : x(x_), y(y_) {}
template<class U>
operator Point<U>() {
return Point<U>(U(x), U(y));
}
Point &operator+=(const Point &p) & {
x += p.x;
y += p.y;
return *this;
}
Point &operator-=(const Point &p) & {
x -= p.x;
y -= p.y;
return *this;
}
Point &operator*=(const T &v) & {
x *= v;
y *= v;
return *this;
}
Point &operator/=(const T &v) & {
x /= v;
y /= v;
return *this;
}
Point operator-() const {
return Point(-x, -y);
}
friend Point operator+(Point a, const Point &b) {
return a += b;
}
friend Point operator-(Point a, const Point &b) {
return a -= b;
}
friend Point operator*(Point a, const T &b) {
return a *= b;
}
friend Point operator/(Point a, const T &b) {
return a /= b;
}
friend Point operator*(const T &a, Point b) {
return b *= a;
}
friend bool operator==(const Point &a, const Point &b) {
return a.x == b.x && a.y == b.y;
}
friend std::istream &operator>>(std::istream &is, Point &p) {
return is >> p.x >> p.y;
}
friend std::ostream &operator<<(std::ostream &os, const Point &p) {
return os << "(" << p.x << ", " << p.y << ")";
}
};
template<class T>
struct Line {
Point<T> a;
Point<T> b;
Line(const Point<T> &a_ = Point<T>(), const Point<T> &b_ = Point<T>()) : a(a_), b(b_) {}
};
template<class T>
T dot(const Point<T> &a, const Point<T> &b) {
return a.x * b.x + a.y * b.y;
}
template<class T>
T cross(const Point<T> &a, const Point<T> &b) {
return a.x * b.y - a.y * b.x;
}
template<class T>
T square(const Point<T> &p) {
return dot(p, p);
}
template<class T>
double length(const Point<T> &p) {
return std::sqrt(square(p));
}
template<class T>
double length(const Line<T> &l) {
return length(l.a - l.b);
}
template<class T>
Point<T> normalize(const Point<T> &p) {
return p / length(p);
}
template<class T>
bool parallel(const Line<T> &l1, const Line<T> &l2) {
return cross(l1.b - l1.a, l2.b - l2.a) == 0;
}
template<class T>
double distance(const Point<T> &a, const Point<T> &b) {
return length(a - b);
}
template<class T>
double distancePL(const Point<T> &p, const Line<T> &l) {
return std::abs(cross(l.a - l.b, l.a - p)) / length(l);
}
template<class T>
double distancePS(const Point<T> &p, const Line<T> &l) {
if (dot(p - l.a, l.b - l.a) < 0) {
return distance(p, l.a);
}
if (dot(p - l.b, l.a - l.b) < 0) {
return distance(p, l.b);
}
return distancePL(p, l);
}
template<class T>
Point<T> rotate(const Point<T> &a) {
return Point(-a.y, a.x);
}
template<class T>
int sgn(const Point<T> &a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}
template<class T>
bool pointOnLineLeft(const Point<T> &p, const Line<T> &l) {
return cross(l.b - l.a, p - l.a) > 0;
}
template<class T>
Point<T> lineIntersection(const Line<T> &l1, const Line<T> &l2) {
return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}
template<class T>
bool pointOnSegment(const Point<T> &p, const Line<T> &l) {
return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
&& std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}
template<class T>
bool pointInPolygon(const Point<T> &a, const std::vector<Point<T>> &p) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
return true;
}
}
int t = 0;
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
t ^= 1;
}
if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
t ^= 1;
}
}
return t == 1;
}
// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(const Line<T> &l1, const Line<T> &l2) {
if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
return {0, Point<T>(), Point<T>()};
} else {
auto maxx1 = std::max(l1.a.x, l1.b.x);
auto minx1 = std::min(l1.a.x, l1.b.x);
auto maxy1 = std::max(l1.a.y, l1.b.y);
auto miny1 = std::min(l1.a.y, l1.b.y);
auto maxx2 = std::max(l2.a.x, l2.b.x);
auto minx2 = std::min(l2.a.x, l2.b.x);
auto maxy2 = std::max(l2.a.y, l2.b.y);
auto miny2 = std::min(l2.a.y, l2.b.y);
Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
if (!pointOnSegment(p1, l1)) {
std::swap(p1.y, p2.y);
}
if (p1 == p2) {
return {3, p1, p2};
} else {
return {2, p1, p2};
}
}
}
auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
return {0, Point<T>(), Point<T>()};
}
Point p = lineIntersection(l1, l2);
if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
return {1, p, p};
} else {
return {3, p, p};
}
}
template<class T>
double distanceSS(const Line<T> &l1, const Line<T> &l2) {
if (std::get<0>(segmentIntersection(l1, l2)) != 0) {
return 0.0;
}
return std::min({distancePS(l1.a, l2), distancePS(l1.b, l2), distancePS(l2.a, l1), distancePS(l2.b, l1)});
}
template<class T>
bool segmentInPolygon(const Line<T> &l, const std::vector<Point<T>> &p) {
int n = p.size();
if (!pointInPolygon(l.a, p)) {
return false;
}
if (!pointInPolygon(l.b, p)) {
return false;
}
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
auto w = p[(i + 2) % n];
auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
if (t == 1) {
return false;
}
if (t == 0) {
continue;
}
if (t == 2) {
if (pointOnSegment(v, l) && v != l.a && v != l.b) {
if (cross(v - u, w - v) > 0) {
return false;
}
}
} else {
if (p1 != u && p1 != v) {
if (pointOnLineLeft(l.a, Line(v, u))
|| pointOnLineLeft(l.b, Line(v, u))) {
return false;
}
} else if (p1 == v) {
if (l.a == v) {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, l)
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else if (l.b == v) {
if (pointOnLineLeft(u, Line(l.b, l.a))) {
if (pointOnLineLeft(w, Line(l.b, l.a))
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
}
}
}
}
return true;
}
template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
auto d1 = l1.b - l1.a;
auto d2 = l2.b - l2.a;
if (sgn(d1) != sgn(d2)) {
return sgn(d1) == 1;
}
return cross(d1, d2) > 0;
});
std::deque<Line<T>> ls;
std::deque<Point<T>> ps;
for (auto l : lines) {
if (ls.empty()) {
ls.push_back(l);
continue;
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
ps.pop_back();
ls.pop_back();
}
while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
ps.pop_front();
ls.pop_front();
}
if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
if (!pointOnLineLeft(ls.back().a, l)) {
assert(ls.size() == 1);
ls[0] = l;
}
continue;
}
return {};
}
ps.push_back(lineIntersection(ls.back(), l));
ls.push_back(l);
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
ps.pop_back();
ls.pop_back();
}
if (ls.size() <= 2) {
return {};
}
ps.push_back(lineIntersection(ls[0], ls.back()));
return std::vector(ps.begin(), ps.end());
}
using Pt = Point<i64>;
std::vector<Pt> getHull(const std::vector<Pt> &p) {
std::vector<Pt> h;
h.reserve(p.size());
for (const auto &p : p) {
while (!h.empty() && p.y >= h.back().y) {
h.pop_back();
}
while (h.size() > 1 && cross(h.back() - h[h.size() - 2], p - h.back()) >= 0) {
h.pop_back();
}
h.push_back(p);
}
return h;
}
std::vector<Pt> mergeHull(const std::vector<Pt> &a, const std::vector<Pt> &b) {
std::vector<Pt> p(a.size() + b.size());
std::merge(a.begin(), a.end(), b.begin(), b.end(), p.begin(),
[&](const Pt &a, const Pt &b) {
if (a.x != b.x) {
return a.x < b.x;
}
return a.y < b.y;
});
return getHull(p);
}
std::vector<Pt> minkowski(const std::vector<Pt> &a, const std::vector<Pt> &b) {
int i = 0, j = 0;
std::vector<Pt> c;
c.reserve(a.size() + b.size() - 1);
c.push_back(a[0] + b[0]);
while (i + j + 1 < c.size()) {
if (i + 1 == a.size()) {
j++;
} else if (j + 1 == b.size()) {
i++;
} else if (cross(a[i + 1] - a[i], b[j + 1] - b[j]) < 0) {
i++;
} else if (cross(a[i + 1] - a[i], b[j + 1] - b[j]) > 0) {
j++;
} else {
i++;
j++;
}
c.push_back(a[i] + b[j]);
}
return c;
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n;
std::cin >> n;
std::vector<Pt> pt(n);
std::vector<std::vector<Pt>> e(n);
for (int i = 0; i < n; i++) {
if (i) {
int r;
std::cin >> r;
e[i].resize(r);
for (int j = 0; j < r; j++) {
std::cin >> e[i][j];
}
} else {
e[i] = {Pt()};
}
std::cin >> pt[i];
}
std::vector<std::vector<Pt>> A(n * 4), B(n * 4);
auto work = [&](auto &&self, int p, int l, int r) {
if (r - l == 1) {
A[p] = {pt[l]};
std::sort(e[l].begin(), e[l].end(),
[&](const Pt &a, const Pt &b) {
if (a.x != b.x) {
return a.x < b.x;
}
return a.y < b.y;
});
B[p] = getHull(e[l]);
return;
}
int m = (l + r) / 2;
self(self, 2 * p, l, m);
self(self, 2 * p + 1, m, r);
A[p] = mergeHull(minkowski(A[2 * p], B[2 * p + 1]), A[2 * p + 1]);
B[p] = minkowski(B[2 * p], B[2 * p + 1]);
};
work(work, 1, 0, n);
auto findMax = [&](auto &&h, const Pt &a) {
int lo = 0, hi = h.size() - 1;
while (lo < hi) {
int m = (lo + hi) / 2;
if (dot(h[m], a) < dot(h[m + 1], a)) {
lo = m + 1;
} else {
hi = m;
}
}
return dot(h[lo], a);
};
auto query = [&](auto &&self, int p, int l, int r, int x, const Pt &a, i64 c, i64 &tmp) -> int {
if (l >= x) {
return -1;
}
if (r <= x) {
i64 ma = findMax(A[p], a);
if (ma + tmp < c) {
tmp += findMax(B[p], a);
return -1;
}
}
if (r - l == 1) {
return r;
}
int m = (l + r) / 2;
int res = self(self, 2 * p + 1, m, r, x, a, c, tmp);
if (res == -1) {
res = self(self, 2 * p, l, m, x, a, c, tmp);
}
return res;
};
int q;
std::cin >> q;
for (int i = 0; i < q; i++) {
int v;
Pt a;
i64 c;
std::cin >> v >> a >> c;
i64 tmp = 0;
int ans = query(query, 1, 0, n, v, a, c, tmp);
std::cout << ans << "\n";
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3556kb
input:
3 1 1 2 1 2 1 2 3 2 5 1 5 4 3 3 4 5 1 1 2 4 5 12 1 1 1 1 2 1 1 1 3 1 1 1 3 1 1 9 3 2 2 20 3 1 2 18 3 1 2 19 3 1 2 20 3 0 1 8 2 1 0 4 2 1 0 3 2 1 0 2
output:
1 2 3 3 2 2 1 -1 1 -1 2 2
result:
ok 12 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3508kb
input:
2 47 11 1 98 25 9 90 10 1 32 28 1811 2 17 44 4114 1 36 88 2661 2 79 33 3681 1 53 26 2778 2 59 20 2332 2 63 45 4616 2 72 11 10835 1 13 28 919 2 16 59 4445
output:
1 -1 -1 2 -1 1 2 1 1 2
result:
ok 10 numbers
Test #3:
score: -100
Wrong Answer
time: 0ms
memory: 3856kb
input:
3 87 42 5 69 12 82 79 10 88 45 51 40 3 18 6 5 73 100 58 41 40 88 54 5 40 98 31 63 100 3 32 13 1811 1 51 21 5318 1 32 5 2994 2 77 51 19184 2 78 60 1763 1 10 1 913 1 22 51 4057 1 2 5 385 2 50 15 989 2 65 53 1488 1 49 82 7708 2 33 90 1133 1 23 33 3388 1 92 36 9516 3 39 61 10014 2 43 55 1103 2 48 38 127...
output:
3 1 1 1 2 -1 -1 -1 2 2 -1 2 -1 1 2 2 -1 3 2 2 3 1 1 1 -1 1 1 1 3 1 -1 1 -1 1 2 1 2 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 2 -1 1 -1 2 -1 1 1 1 1 3 1 2 3 2 2 -1 1 -1 1 1 3 1 1 1 3 2 -1 -1 2 1 2 1 2 1 -1 -1 -1 1 2 1 1 -1 -1 1 3 2 2
result:
wrong answer 39th numbers differ - expected: '1', found: '-1'