QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#788365#8525. Mercenariesucup-team004WA 0ms3856kbC++2314.9kb2024-11-27 16:42:142024-11-27 16:42:14

Judging History

你现在查看的是最新测评结果

  • [2024-11-27 16:42:14]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3856kb
  • [2024-11-27 16:42:14]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
using u128 = unsigned __int128;

template<class T>
struct Point {
    T x;
    T y;
    Point(const T &x_ = 0, const T &y_ = 0) : x(x_), y(y_) {}
    
    template<class U>
    operator Point<U>() {
        return Point<U>(U(x), U(y));
    }
    Point &operator+=(const Point &p) & {
        x += p.x;
        y += p.y;
        return *this;
    }
    Point &operator-=(const Point &p) & {
        x -= p.x;
        y -= p.y;
        return *this;
    }
    Point &operator*=(const T &v) & {
        x *= v;
        y *= v;
        return *this;
    }
    Point &operator/=(const T &v) & {
        x /= v;
        y /= v;
        return *this;
    }
    Point operator-() const {
        return Point(-x, -y);
    }
    friend Point operator+(Point a, const Point &b) {
        return a += b;
    }
    friend Point operator-(Point a, const Point &b) {
        return a -= b;
    }
    friend Point operator*(Point a, const T &b) {
        return a *= b;
    }
    friend Point operator/(Point a, const T &b) {
        return a /= b;
    }
    friend Point operator*(const T &a, Point b) {
        return b *= a;
    }
    friend bool operator==(const Point &a, const Point &b) {
        return a.x == b.x && a.y == b.y;
    }
    friend std::istream &operator>>(std::istream &is, Point &p) {
        return is >> p.x >> p.y;
    }
    friend std::ostream &operator<<(std::ostream &os, const Point &p) {
        return os << "(" << p.x << ", " << p.y << ")";
    }
};

template<class T>
struct Line {
    Point<T> a;
    Point<T> b;
    Line(const Point<T> &a_ = Point<T>(), const Point<T> &b_ = Point<T>()) : a(a_), b(b_) {}
};

template<class T>
T dot(const Point<T> &a, const Point<T> &b) {
    return a.x * b.x + a.y * b.y;
}

template<class T>
T cross(const Point<T> &a, const Point<T> &b) {
    return a.x * b.y - a.y * b.x;
}

template<class T>
T square(const Point<T> &p) {
    return dot(p, p);
}

template<class T>
double length(const Point<T> &p) {
    return std::sqrt(square(p));
}

template<class T>
double length(const Line<T> &l) {
    return length(l.a - l.b);
}

template<class T>
Point<T> normalize(const Point<T> &p) {
    return p / length(p);
}

template<class T>
bool parallel(const Line<T> &l1, const Line<T> &l2) {
    return cross(l1.b - l1.a, l2.b - l2.a) == 0;
}

template<class T>
double distance(const Point<T> &a, const Point<T> &b) {
    return length(a - b);
}

template<class T>
double distancePL(const Point<T> &p, const Line<T> &l) {
    return std::abs(cross(l.a - l.b, l.a - p)) / length(l);
}

template<class T>
double distancePS(const Point<T> &p, const Line<T> &l) {
    if (dot(p - l.a, l.b - l.a) < 0) {
        return distance(p, l.a);
    }
    if (dot(p - l.b, l.a - l.b) < 0) {
        return distance(p, l.b);
    }
    return distancePL(p, l);
}

template<class T>
Point<T> rotate(const Point<T> &a) {
    return Point(-a.y, a.x);
}

template<class T>
int sgn(const Point<T> &a) {
    return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}

template<class T>
bool pointOnLineLeft(const Point<T> &p, const Line<T> &l) {
    return cross(l.b - l.a, p - l.a) > 0;
}

template<class T>
Point<T> lineIntersection(const Line<T> &l1, const Line<T> &l2) {
    return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}

template<class T>
bool pointOnSegment(const Point<T> &p, const Line<T> &l) {
    return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
        && std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}

template<class T>
bool pointInPolygon(const Point<T> &a, const std::vector<Point<T>> &p) {
    int n = p.size();
    for (int i = 0; i < n; i++) {
        if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
            return true;
        }
    }
    
    int t = 0;
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
            t ^= 1;
        }
        if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
            t ^= 1;
        }
    }
    
    return t == 1;
}

// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(const Line<T> &l1, const Line<T> &l2) {
    if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
        if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
            return {0, Point<T>(), Point<T>()};
        } else {
            auto maxx1 = std::max(l1.a.x, l1.b.x);
            auto minx1 = std::min(l1.a.x, l1.b.x);
            auto maxy1 = std::max(l1.a.y, l1.b.y);
            auto miny1 = std::min(l1.a.y, l1.b.y);
            auto maxx2 = std::max(l2.a.x, l2.b.x);
            auto minx2 = std::min(l2.a.x, l2.b.x);
            auto maxy2 = std::max(l2.a.y, l2.b.y);
            auto miny2 = std::min(l2.a.y, l2.b.y);
            Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
            Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
            if (!pointOnSegment(p1, l1)) {
                std::swap(p1.y, p2.y);
            }
            if (p1 == p2) {
                return {3, p1, p2};
            } else {
                return {2, p1, p2};
            }
        }
    }
    auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
    auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
    auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
    auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
    
    if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
        return {0, Point<T>(), Point<T>()};
    }
    
    Point p = lineIntersection(l1, l2);
    if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
        return {1, p, p};
    } else {
        return {3, p, p};
    }
}

template<class T>
double distanceSS(const Line<T> &l1, const Line<T> &l2) {
    if (std::get<0>(segmentIntersection(l1, l2)) != 0) {
        return 0.0;
    }
    return std::min({distancePS(l1.a, l2), distancePS(l1.b, l2), distancePS(l2.a, l1), distancePS(l2.b, l1)});
}

template<class T>
bool segmentInPolygon(const Line<T> &l, const std::vector<Point<T>> &p) {
    int n = p.size();
    if (!pointInPolygon(l.a, p)) {
        return false;
    }
    if (!pointInPolygon(l.b, p)) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        auto w = p[(i + 2) % n];
        auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
        
        if (t == 1) {
            return false;
        }
        if (t == 0) {
            continue;
        }
        if (t == 2) {
            if (pointOnSegment(v, l) && v != l.a && v != l.b) {
                if (cross(v - u, w - v) > 0) {
                    return false;
                }
            }
        } else {
            if (p1 != u && p1 != v) {
                if (pointOnLineLeft(l.a, Line(v, u))
                    || pointOnLineLeft(l.b, Line(v, u))) {
                    return false;
                }
            } else if (p1 == v) {
                if (l.a == v) {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, l)
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else if (l.b == v) {
                    if (pointOnLineLeft(u, Line(l.b, l.a))) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                }
            }
        }
    }
    return true;
}

template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
    std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
        auto d1 = l1.b - l1.a;
        auto d2 = l2.b - l2.a;
        
        if (sgn(d1) != sgn(d2)) {
            return sgn(d1) == 1;
        }
        
        return cross(d1, d2) > 0;
    });
    
    std::deque<Line<T>> ls;
    std::deque<Point<T>> ps;
    for (auto l : lines) {
        if (ls.empty()) {
            ls.push_back(l);
            continue;
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
            ps.pop_back();
            ls.pop_back();
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
            ps.pop_front();
            ls.pop_front();
        }
        
        if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
            if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
                
                if (!pointOnLineLeft(ls.back().a, l)) {
                    assert(ls.size() == 1);
                    ls[0] = l;
                }
                continue;
            }
            return {};
        }
        
        ps.push_back(lineIntersection(ls.back(), l));
        ls.push_back(l);
    }
    
    while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
        ps.pop_back();
        ls.pop_back();
    }
    if (ls.size() <= 2) {
        return {};
    }
    ps.push_back(lineIntersection(ls[0], ls.back()));
    
    return std::vector(ps.begin(), ps.end());
}

using Pt = Point<i64>;

std::vector<Pt> getHull(const std::vector<Pt> &p) {
    std::vector<Pt> h;
    h.reserve(p.size());
    for (const auto &p : p) {
        while (!h.empty() && p.y >= h.back().y) {
            h.pop_back();
        }
        while (h.size() > 1 && cross(h.back() - h[h.size() - 2], p - h.back()) >= 0) {
            h.pop_back();
        }
        h.push_back(p);
    }
    return h;
}

std::vector<Pt> mergeHull(const std::vector<Pt> &a, const std::vector<Pt> &b) {
    std::vector<Pt> p(a.size() + b.size());
    std::merge(a.begin(), a.end(), b.begin(), b.end(), p.begin(),
        [&](const Pt &a, const Pt &b) {
            if (a.x != b.x) {
                return a.x < b.x;
            }
            return a.y < b.y;
        });
    return getHull(p);
}

std::vector<Pt> minkowski(const std::vector<Pt> &a, const std::vector<Pt> &b) {
    int i = 0, j = 0;
    std::vector<Pt> c;
    c.reserve(a.size() + b.size() - 1);
    c.push_back(a[0] + b[0]);
    while (i + j + 1 < c.size()) {
        if (i + 1 == a.size()) {
            j++;
        } else if (j + 1 == b.size()) {
            i++;
        } else if (cross(a[i + 1] - a[i], b[j + 1] - b[j]) < 0) {
            i++;
        } else if (cross(a[i + 1] - a[i], b[j + 1] - b[j]) > 0) {
            j++;
        } else {
            i++;
            j++;
        }
        c.push_back(a[i] + b[j]);
    }
    return c;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n;
    std::cin >> n;
    
    std::vector<Pt> pt(n);
    std::vector<std::vector<Pt>> e(n);
    for (int i = 0; i < n; i++) {
        if (i) {
            int r;
            std::cin >> r;
            e[i].resize(r);
            for (int j = 0; j < r; j++) {
                std::cin >> e[i][j];
            }
        } else {
            e[i] = {Pt()};
        }
        std::cin >> pt[i];
    }
    
    std::vector<std::vector<Pt>> A(n * 4), B(n * 4);
    
    auto work = [&](auto &&self, int p, int l, int r) {
        if (r - l == 1) {
            A[p] = {pt[l]};
            std::sort(e[l].begin(), e[l].end(),
                [&](const Pt &a, const Pt &b) {
                    if (a.x != b.x) {
                        return a.x < b.x;
                    }
                    return a.y < b.y;
                });
            B[p] = getHull(e[l]);
            return;
        }
        int m = (l + r) / 2;
        self(self, 2 * p, l, m);
        self(self, 2 * p + 1, m, r);
        A[p] = mergeHull(minkowski(A[2 * p], B[2 * p + 1]), A[2 * p + 1]);
        B[p] = minkowski(B[2 * p], B[2 * p + 1]);
    };
    
    work(work, 1, 0, n);
    
    auto findMax = [&](auto &&h, const Pt &a) {
        int lo = 0, hi = h.size() - 1;
        while (lo < hi) {
            int m = (lo + hi) / 2;
            if (dot(h[m], a) < dot(h[m + 1], a)) {
                lo = m + 1;
            } else {
                hi = m;
            }
        }
        return dot(h[lo], a);
    };
    
    auto query = [&](auto &&self, int p, int l, int r, int x, const Pt &a, i64 c, i64 &tmp) -> int {
        if (l >= x) {
            return -1;
        }
        if (r <= x) {
            i64 ma = findMax(A[p], a);
            if (ma + tmp < c) {
                tmp += findMax(B[p], a);
                return -1;
            }
        }
        if (r - l == 1) {
            return r;
        }
        int m = (l + r) / 2;
        int res = self(self, 2 * p + 1, m, r, x, a, c, tmp);
        if (res == -1) {
            res = self(self, 2 * p, l, m, x, a, c, tmp);
        }
        return res;
    };
    
    int q;
    std::cin >> q;
    
    for (int i = 0; i < q; i++) {
        int v;
        Pt a;
        i64 c;
        std::cin >> v >> a >> c;
        
        i64 tmp = 0;
        int ans = query(query, 1, 0, n, v, a, c, tmp);
        std::cout << ans << "\n";
    }
    
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3556kb

input:

3
1 1
2 1 2 1 2
3 2
5 1 5 4 3 3 4 5 1 1 2
4 5
12
1 1 1 1
2 1 1 1
3 1 1 1
3 1 1 9
3 2 2 20
3 1 2 18
3 1 2 19
3 1 2 20
3 0 1 8
2 1 0 4
2 1 0 3
2 1 0 2

output:

1
2
3
3
2
2
1
-1
1
-1
2
2

result:

ok 12 numbers

Test #2:

score: 0
Accepted
time: 0ms
memory: 3508kb

input:

2
47 11
1 98 25
9 90
10
1 32 28 1811
2 17 44 4114
1 36 88 2661
2 79 33 3681
1 53 26 2778
2 59 20 2332
2 63 45 4616
2 72 11 10835
1 13 28 919
2 16 59 4445

output:

1
-1
-1
2
-1
1
2
1
1
2

result:

ok 10 numbers

Test #3:

score: -100
Wrong Answer
time: 0ms
memory: 3856kb

input:

3
87 42
5 69 12 82 79 10 88 45 51 40 3
18 6
5 73 100 58 41 40 88 54 5 40 98
31 63
100
3 32 13 1811
1 51 21 5318
1 32 5 2994
2 77 51 19184
2 78 60 1763
1 10 1 913
1 22 51 4057
1 2 5 385
2 50 15 989
2 65 53 1488
1 49 82 7708
2 33 90 1133
1 23 33 3388
1 92 36 9516
3 39 61 10014
2 43 55 1103
2 48 38 127...

output:

3
1
1
1
2
-1
-1
-1
2
2
-1
2
-1
1
2
2
-1
3
2
2
3
1
1
1
-1
1
1
1
3
1
-1
1
-1
1
2
1
2
1
-1
-1
1
1
-1
1
-1
-1
1
1
-1
-1
-1
-1
2
-1
1
-1
2
-1
1
1
1
1
3
1
2
3
2
2
-1
1
-1
1
1
3
1
1
1
3
2
-1
-1
2
1
2
1
2
1
-1
-1
-1
1
2
1
1
-1
-1
1
3
2
2

result:

wrong answer 39th numbers differ - expected: '1', found: '-1'