QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#78570 | #5517. Adjacent Product Sum | lychees | AC ✓ | 42ms | 5120kb | C++23 | 13.5kb | 2023-02-19 16:06:52 | 2023-02-19 16:06:52 |
Judging History
answer
/*
Last Weapon is my own algorithms library for competitive programming, it is a fork from ACL with some alternative algorithms and additional features. Use it at your own risk.
Repo: https://github.com/lychees/last-weapon
Blog: https://www.shuizilong.com/house
*/
#pragma comment(linker, "/STACK:36777216")
#define LOCAL
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <climits>
#include <cassert>
#include <complex>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
#define REP(i, n) for (int i=0;i<n;++i)
#define FOR(i, a, b) for (int i=a;i<b;++i)
#define DWN(i, b, a) for (int i=b-1;i>=a;--i)
#define REP_1(i, n) for (int i=1;i<=n;++i)
#define FOR_1(i, a, b) for (int i=a;i<=b;++i)
#define DWN_1(i, b, a) for (int i=b;i>=a;--i)
#define ECH(it, A) for (__typeof((A).begin()) it=(A).begin(); it != (A).end(); ++it)
#define rECH(it, A) for (__typeof((A).rbegin()) it=(A).rbegin(); it != (A).rend(); ++it)
#define REP_S(i, str) for (char*i=str;*i;++i)
#define REP_L(i, hd, suc) for (int i=hd;i;i=suc[i])
#define REP_G(i, u) REP_L(i,hd[u],suc)
#define REP_SS(x, s) for (int x=s;x;x=(x-1)&s)
#define DO(n) for ( int ____n = n; ____n-->0; )
#define ALL(A) A.begin(), A.end()
#define LLA(A) A.rbegin(), A.rend()
#define CPY(A, B) memcpy(A, B, sizeof(A))
#define INS(A, P, B) A.insert(A.begin() + P, B)
#define ERS(A, P) A.erase(A.begin() + P)
#define LBD(A, x) (lower_bound(ALL(A), x) - A.begin())
#define UBD(A, x) (upper_bound(ALL(A), x) - A.begin())
#define CTN(T, x) (T.find(x) != T.end())
#define SZ(A) int((A).size())
#define PB push_back
#define MP(A, B) make_pair(A, B)
#define PTT pair<T, T>
#define Ts *this
#define rTs return Ts
#define fi first
#define se second
#define re real()
#define im imag()
#define Rush for(int ____T=RD(); ____T--;)
#define Display(A, n, m) { \
REP(i, n){ \
REP(j, m-1) cout << A[i][j] << " "; \
cout << A[i][m-1] << endl; \
} \
}
#define Display_1(A, n, m) { \
REP_1(i, n){ \
REP_1(j, m-1) cout << A[i][j] << " "; \
cout << A[i][m] << endl; \
} \
}
typedef long long LL;
typedef double DB;
typedef unsigned uint;
typedef unsigned long long uLL;
typedef vector<int> VI;
typedef vector<char> VC;
typedef vector<string> VS;
typedef vector<LL> VL;
typedef vector<DB> VF;
typedef set<int> SI;
typedef set<string> SS;
typedef map<int, int> MII;
typedef map<string, int> MSI;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
typedef vector<PII> VII;
typedef vector<VI> VVI;
typedef vector<VII> VVII;
template<class T> inline T& RD(T &);
template<class T> inline void OT(const T &);
inline LL RD(){LL x; return RD(x);}
inline DB& RF(DB &);
inline DB RF(){DB x; return RF(x);}
inline char* RS(char *s);
inline char& RC(char &c);
inline char RC();
inline char& RC(char &c){scanf(" %c", &c); return c;}
inline char RC(){char c; return RC(c);}
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;}
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;}
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;}
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;}
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);}
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);}
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);}
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}
inline char& RC(char &a, char &b){RC(a), RC(b); return a;}
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;}
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;}
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;}
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;}
inline void RS(char *s1, char *s2){RS(s1), RS(s2);}
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);}
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));}
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));}
template<class T> inline void CLR(T &A){A.clear();}
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);}
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);}
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);}
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);}
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);}
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);}
template<class T> inline void CLR(priority_queue<T> &Q){while (!Q.empty()) Q.pop();}
template<class T> inline void CLR(stack<T> &S){while (!S.empty()) S.pop();}
template<class T> inline void CLR(queue<T> &Q){while (!Q.empty()) Q.pop();}
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);}
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);}
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);}
template<class T> inline bool EPT(T &a){return a.empty();}
template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;}
template<class T, class C> inline T& SRT(T &A, C cmp){sort(ALL(A), cmp); return A;}
template<class T> inline T& RVS(T &A){reverse(ALL(A)); return A;}
template<class T> inline T& UNQQ(T &A){A.resize(unique(ALL(A))-A.begin());return A;}
template<class T> inline T& UNQ(T &A){SRT(A);return UNQQ(A);}
template<class T, class C> inline T& UNQ(T &A, C cmp){SRT(A, cmp);return UNQQ(A);}
/** Constant List .. **/ //{
int MOD = int(1e9) + 7;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const DB EPS = 1e-9;
const DB OO = 1e20;
const DB PI = acos(-1.0); //M_PI;
const int dx[] = {-1, 1, 0, 0};
const int dy[] = {0, 0, 1, -1};
/** Add On .. **/ //{
template<class T> inline bool checkMin(T &a,const T b){return b < a ? a = b, 1 : 0;}
template<class T> inline bool checkMax(T &a,const T b){return a < b ? a = b, 1 : 0;}
template <class T, class C> inline bool checkUpd(T& a, const T b, C c){return c(b,a) ? a = b, 1 : 0;}
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);}
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);}
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));}
template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));}
template<class T> inline T sqr(T a){return a*a;}
template<class T> inline T cub(T a){return a*a*a;}
template<class T> inline T ceil(T x, T y){return (x - 1) / y + 1;}
template<class T> T abs(T x){return x>0?x:-x;}
inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;}
inline int sgn(DB x, DB y){return sgn(x - y);}
template<typename T1, typename T2> istream& operator>>(istream& in, pair<T1, T2>& a) {
in >> a.fi >> a.se;
return in;
}
template<typename T, size_t N> istream& operator>>(istream& in, array<T, N>& a) {
REP(i, N) cin >> a[i];
return in;
}
template<typename T> istream& operator>>(istream& in, vector<T>& a) {
REP(i, SZ(a)) in >> a[i];
return in;
}
template<typename T1, typename T2> ostream& operator<<(ostream& out, pair<T1, T2>& a) {
out << a.fi << " " << a.se;
return out;
}
template<typename T, size_t N> ostream& operator<<(ostream& out, array<T, N>& a) {
REP(i, N-1) out << a[i] << " "; if (N) out << a.back();
return out;
}
template<typename T> ostream& operator<<(ostream& out, vector<T>& a) {
REP(i, SZ(a)-1) out << a[i] << " "; if (SZ(a)) out << a.back();
return out;
}
/** I/O Accelerator Interface .. **/ //{
#define g (c=getchar())
#define d isdigit(g)
#define p x=x*10+c-'0'
#define n x=x*10+'0'-c
#define pp l/=10,p
#define nn l/=10,n
template<class T> inline T& RD(T &x){
char c;while(g,c!='-'&&!isdigit(c));
if (c=='-'){x='0'-g;while(d)n;}
else{x=c-'0';while(d)p;}
return x;
}
inline DB& RF(DB &x){
char c;while(g,c!='-'&&c!='.'&&!isdigit(c));
if(c=='-')if(g=='.'){x=0;DB l=1;while(d)nn;x*=l;}
else{x='0'-c;while(d)n;if(c=='.'){DB l=1;while(d)nn;x*=l;}}
else if(c=='.'){x=0;DB l=1;while(d)pp;x*=l;}
else{x=c-'0';while(d)p;if(c=='.'){DB l=1;while(d)pp;x*=l;}}
return x;
}
#undef nn
#undef pp
#undef n
#undef p
#undef d
#undef g
inline char* RS(char *s){
scanf("%s", s);
return s;
}
LL last_ans; int Case; template<class T> inline void OT(const T &x){
cout << x << endl;
}
namespace lastweapon {}
using namespace lastweapon;
const int N = int(2e5) + 9;
LL a[N]; int n;
LL z;
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
Rush {
RD(n); REP(i, n) RD(a[i]); sort(a, a+n);
LL z = a[n-1] * a[n-2];
DWN(i, n-2, 0) {
z += a[i] * a[i+2];
}
z += a[1] * a[0];
cout << z << endl;
}
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3368kb
input:
4 3 1 2 3 6 1 1 1 1 0 0 5 100000 100000 100000 100000 -100000 5 1 2 3 4 5
output:
11 3 10000000000 48
result:
ok 4 number(s): "11 3 10000000000 48"
Test #2:
score: 0
Accepted
time: 19ms
memory: 5052kb
input:
1 200000 11009 633591 -419208 -664908 731171 -774644 -878270 656078 -38057 -220602 -897906 670165 -765931 -612936 -583782 -549624 -644245 137209 -983054 -110583 349193 699723 -412876 -417691 810865 -474314 -200632 570810 -283481 39600 20940 218215 -408751 -507326 -961614 600863 499517 -538207 767155...
output:
66608463123493911
result:
ok 1 number(s): "66608463123493911"
Test #3:
score: 0
Accepted
time: 18ms
memory: 4928kb
input:
1 200000 7902 376928 977876 -664787 382287 -671247 263725 -875047 554163 59899 -976624 726497 617682 -387432 -960499 -703748 -644991 72374 -564962 -569121 -412123 907945 -379338 915496 665461 389485 -742294 942448 -862668 -677446 -72510 -382856 893536 128827 -596269 -572440 -532339 536145 -521524 -3...
output:
66581505433554478
result:
ok 1 number(s): "66581505433554478"
Test #4:
score: 0
Accepted
time: 18ms
memory: 4948kb
input:
1 200000 969944 -942957 346587 328855 61775 -596222 -622652 -504245 181233 -694452 -90194 -350098 1294 844554 -273993 205351 -674109 35911 887981 -929585 826563 179388 689051 -716467 450354 -746718 -220733 348937 529775 -331268 868892 -885852 -839030 834684 803928 225887 435807 575645 189798 -255705...
output:
66721135858270454
result:
ok 1 number(s): "66721135858270454"
Test #5:
score: 0
Accepted
time: 32ms
memory: 5116kb
input:
1 200000 -68015 -262842 778522 -607801 -287109 542027 -515508 -105072 871526 -483654 865940 -391840 419758 -929943 -650710 -885551 359996 -965702 340923 611878 -899901 387610 -214190 616720 235247 117080 300828 -342648 20292 -83165 747072 -521774 561331 505688 -830728 -877713 438804 -419707 -35659 7...
output:
66646767806203928
result:
ok 1 number(s): "66646767806203928"
Test #6:
score: 0
Accepted
time: 23ms
memory: 5120kb
input:
1 200000 894027 417274 -887618 -579309 -635992 645424 598116 363804 -536255 -203152 787222 531567 866594 -732810 35796 -941601 -703973 -65388 759014 -811810 -724439 595832 -180652 -78465 -945009 113803 -212463 994139 377883 -800211 -311527 -59622 828766 -788457 -493755 885764 372098 -380207 675663 8...
output:
66669581129323609
result:
ok 1 number(s): "66669581129323609"
Test #7:
score: 0
Accepted
time: 27ms
memory: 4148kb
input:
2 100000 169603 145427 -202283 -480350 -856872 -65853 -442884 -773569 -275747 -953075 873381 -155156 -519569 -351127 558958 -345448 461553 927180 -310163 -46521 -857521 -906097 -91734 875600 836439 39554 488295 162237 -570813 -456645 -876308 254421 93745 689934 -712525 31372 536079 487786 191237 747...
output:
33392172147649469 33329865049707147
result:
ok 2 number(s): "33392172147649469 33329865049707147"
Test #8:
score: 0
Accepted
time: 17ms
memory: 4144kb
input:
2 100000 166496 -139607 131578 -451857 794246 -927605 601038 660456 316473 -672574 -170486 -196898 -101105 909229 -754537 535280 -602416 -74433 -857221 -435356 381164 365348 -58196 208786 621332 -998574 -990145 -431275 -213222 -110468 65094 716574 430883 -604211 -375551 829699 -495776 -535937 -13229...
output:
33445326050536015 33363059196148572
result:
ok 2 number(s): "33445326050536015 33363059196148572"
Test #9:
score: 0
Accepted
time: 14ms
memory: 4156kb
input:
2 100000 -871463 568880 -401636 611487 445363 -852579 777884 -870669 -56457 -461776 -249205 824583 -717493 71511 868747 -555622 -603163 825881 595722 -893894 -380151 573570 -24659 548454 377854 -134776 496566 -157711 242444 -827514 -56727 -919349 698318 -933207 954943 -343604 472370 -496437 579028 -...
output:
33375458994693108 33453260311973619
result:
ok 2 number(s): "33375458994693108 33453260311973619"
Test #10:
score: 0
Accepted
time: 9ms
memory: 4156kb
input:
2 100000 90579 -751006 -67776 -423243 124850 -749182 856656 -471496 -429386 783875 637226 782840 666120 -668134 -444748 353477 430943 -175732 -986188 745643 -204689 781792 -927900 -118360 162747 -236127 -981874 213927 669738 -579410 884675 577656 604 737799 355139 -510426 -587857 -456937 325201 -996...
output:
33287772768665659 33313392958107202
result:
ok 2 number(s): "33287772768665659 33313392958107202"
Test #11:
score: 0
Accepted
time: 20ms
memory: 4168kb
input:
2 100000 -947380 -70891 -670693 -394750 -224033 389067 -1349 -2620 -773945 -935625 656582 -293754 -915416 494148 -821465 -737425 -633027 -212195 466755 287104 68848 53235 -894362 249678 982492 -309107 -460313 557194 -972672 -331307 860928 -23415 -668739 408803 692113 316272 380289 -417437 -963479 -9...
output:
33288924160392129 33379620728513712
result:
ok 2 number(s): "33288924160392129 33379620728513712"
Test #12:
score: 0
Accepted
time: 30ms
memory: 3580kb
input:
10 20000 841746 527518 595261 331297 -946901 129987 670374 -140388 -684770 309555 -302589 415564 -387435 613331 -624940 -95922 945847 -199224 24636 -565799 -72069 -395358 -523453 -511446 854898 -846967 -749453 -341866 173256 -508156 574073 878761 984359 798117 -622388 434663 264157 607113 -38776 139...
output:
6622802477773024 6640013265208007 6592100254591181 6640170208895030 6688143425864831 6705222845668074 6676830146528095 6618221005278570 6714940493280121 6724345935461679
result:
ok 10 numbers
Test #13:
score: 0
Accepted
time: 21ms
memory: 3424kb
input:
100 2000 -607224 -718287 -433045 -816611 -935719 -559217 508630 -485197 134273 -520442 886499 318527 104344 -376092 -146638 -921227 98459 -324526 -396653 39142 -536124 114612 -22769 215450 -806035 217692 -758435 -360933 -470886 -271877 -839014 683804 138195 405799 -385833 481109 198084 -145350 -4353...
output:
664320265599433 656060796084111 670847172001984 693285015575982 641806321082038 686775083044219 660836368097072 665848189708176 656774554796514 640515026177509 637922445211883 651793096312130 668305333192730 680836044550146 642790615977139 659533778528338 689986245290621 679990801733695 664398460938...
result:
ok 100 numbers
Test #14:
score: 0
Accepted
time: 14ms
memory: 3564kb
input:
1000 200 324840 875913 -750586 872247 891834 -802538 -394930 -39271 -402853 -935536 -148671 -311516 -470147 168411 428251 -412526 736882 93448 384219 -987587 -924419 974032 864821 448111 409149 -889736 17366 -198877 -314710 -952652 406856 124043 183144 -182906 -79075 308212 785198 -276953 260766 178...
output:
65021379321819 61482831940623 64907628507685 65762816459484 64637099110104 70521910685375 71017401353273 63188959323659 64923749759877 78536500128365 72214363259863 72551077515316 64319147242944 70483971638209 60920280492111 74602439250852 66241024614625 66265066071760 69062565668032 71163034443457 ...
result:
ok 1000 numbers
Test #15:
score: 0
Accepted
time: 42ms
memory: 3384kb
input:
10000 20 15812 -152393 101507 981503 -762519 70570 197040 710069 767152 -683226 691070 -756515 -396347 -388139 -327351 -323136 -451642 -327842 989160 548358 20 -344746 439864 -408284 787179 -526193 -898718 -1701 -843020 956421 697486 -822953 243028 -209174 82020 -997778 242139 -932413 -673559 176880...
output:
5836057833484 7900249490263 6741513108893 7695904868186 5905346687260 6210447934702 6528577603481 6366200793553 7285941052913 6695898759021 5336229787408 6603459571509 5516442382707 6068193077387 6836405277420 5809766642183 7914983783571 7722262525971 6863867878728 5452027662683 6336759366520 571716...
result:
ok 10000 numbers
Test #16:
score: 0
Accepted
time: 18ms
memory: 3524kb
input:
42 4761 -884836 423256 -16540 5180 626061 574189 64375 565165 891155 631808 84833 -143882 -909496 758173 204660 -700050 163672 -867390 920820 848717 -347766 -768001 437344 -21942 403333 -220324 388822 84096 -938705 527686 841315 876833 131270 836458 700753 -740379 253394 -432058 494815 -255931 -8361...
output:
1568197940334474 1627465779774764 1613876915865833 1579828038154862 1563836977436851 1608582638636216 1589836095120383 1577031292775532 1608544317984962 1617042083628598 1589929522676958 1588048186120208 1562897607148914 1551101839004540 1582371865754027 1590036248776725 1606863383861959 16117573084...
result:
ok 42 numbers
Test #17:
score: 0
Accepted
time: 23ms
memory: 3408kb
input:
69 2898 -826877 -729045 -951445 -391404 197462 798213 -288928 -157886 631013 -85218 377079 -128051 -661781 -189943 -900471 43621 -847997 400563 -695730 -932224 -245215 -395642 -559167 -118464 920363 252772 -623730 -286403 -674675 -560306 -448483 924941 210935 -834513 608008 -136257 -953207 665428 29...
output:
942714868546250 946859857816400 969037992012804 977484785384248 919489346073972 969868311124320 933818196842132 977503973543166 967593973040804 982214889485424 963286569050653 970847618560724 957508838495683 945357209274080 933598867828567 978233850926901 975379109413588 1000443792815115 98105291396...
result:
ok 69 numbers