QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#784682 | #9614. 分治 | peaneval_kala | 75 | 511ms | 121820kb | C++23 | 11.9kb | 2024-11-26 15:42:12 | 2024-11-26 15:42:13 |
Judging History
answer
#pragma GCC optimize(3, "unroll-loops", "no-stack-protector")
#define atsum(l, r) accumulate(l, r, 0)
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
using ll = long long;
using ull = unsigned long long;
constexpr int inf = 0x3f3f3f3f;
constexpr ll INF = 0x3f3f3f3f3f3f3f3f;
template <typename T>
inline void chkmin(T &x, T y) {
x = min(x, y);
}
template <typename T>
inline void chkmax(T &x, T y) {
x = max(x, y);
}
namespace FastIO {
// ------------------------------
#define IN_HAS_NEG
#define OUT_HAS_NEG
#define CHK_EOF
#define DISABLE_MMAP
// ------------------------------
#if __cplusplus < 201400
#error Please use C++14 or higher.
#endif
#if __cplusplus > 201700
#define INLINE_V inline
#else
#define INLINE_V
#endif
#if (defined(LOCAL) || defined(_WIN32)) && !defined(DISABLE_MMAP)
#define DISABLE_MMAP
#endif
#ifndef DISABLE_MMAP
#include <sys/mman.h>
#endif
#ifdef LOCAL
inline char gc() { return getchar(); }
inline void pc(char c) { putchar(c); }
#else
#ifdef DISABLE_MMAP
INLINE_V constexpr int _READ_SIZE = 1 << 18;
INLINE_V static char _read_buffer[_READ_SIZE], *_read_ptr = nullptr,
*_read_ptr_end = nullptr;
inline char gc() {
if (__builtin_expect(_read_ptr == _read_ptr_end, false)) {
_read_ptr = _read_buffer;
_read_ptr_end =
_read_buffer + fread(_read_buffer, 1, _READ_SIZE, stdin);
#ifdef CHK_EOF
if (__builtin_expect(_read_ptr == _read_ptr_end, false)) return EOF;
#endif
}
return *_read_ptr++;
}
#else
INLINE_V static const char *_read_ptr =
(const char *)mmap(nullptr, INT_MAX, 1, 2, 0, 0);
inline char gc() { return *_read_ptr++; }
#endif
INLINE_V constexpr int _WRITE_SIZE = 1 << 18;
INLINE_V static char _write_buffer[_WRITE_SIZE], *_write_ptr = _write_buffer;
inline void pc(char c) {
*_write_ptr++ = c;
if (__builtin_expect(_write_buffer + _WRITE_SIZE == _write_ptr, false)) {
fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout);
_write_ptr = _write_buffer;
}
}
INLINE_V struct _auto_flush {
~_auto_flush() {
fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout);
}
} _auto_flush;
#endif
#ifdef CHK_EOF
inline bool _isdigit(char c) { return (c & 16) && c != EOF; }
inline bool _isgraph(char c) { return c > 32 && c != EOF; }
#else
inline bool _isdigit(char c) { return c & 16; }
inline bool _isgraph(char c) { return c > 32; }
#endif
template <class T>
INLINE_V constexpr bool _is_integer = numeric_limits<T>::is_integer;
template <class T>
INLINE_V constexpr bool _is_signed = numeric_limits<T>::is_signed;
template <class T>
INLINE_V constexpr bool _is_unsigned = _is_integer<T> && !_is_signed<T>;
template <>
INLINE_V constexpr bool _is_integer<__int128> = true;
template <>
INLINE_V constexpr bool _is_integer<__uint128_t> = true;
template <>
INLINE_V constexpr bool _is_signed<__int128> = true;
template <>
INLINE_V constexpr bool _is_unsigned<__uint128_t> = true;
#undef INLINE_V
inline void read(char &c) {
do c = gc();
while (!_isgraph(c));
}
inline void read_cstr(char *s) {
char c = gc();
while (!_isgraph(c)) c = gc();
while (_isgraph(c)) *s++ = c, c = gc();
*s = 0;
}
inline void read(string &s) {
char c = gc();
s.clear();
while (!_isgraph(c)) c = gc();
while (_isgraph(c)) s.push_back(c), c = gc();
}
#ifdef IN_HAS_NEG
template <class T, enable_if_t<_is_signed<T>, int> = 0>
inline void read(T &x) {
char c = gc();
bool f = true;
x = 0;
while (!_isdigit(c)) {
if (c == 45) f = false;
c = gc();
}
if (f)
while (_isdigit(c)) x = x * 10 + (c & 15), c = gc();
else
while (_isdigit(c)) x = x * 10 - (c & 15), c = gc();
}
template <class T, enable_if_t<_is_unsigned<T>, int> = 0>
#else
template <class T, enable_if_t<_is_integer<T>, int> = 0>
#endif
inline void read(T &x) {
char c = gc();
while (!_isdigit(c)) c = gc();
x = 0;
while (_isdigit(c)) x = x * 10 + (c & 15), c = gc();
}
inline void write(char c) { pc(c); }
inline void write_cstr(const char *s) {
while (*s) pc(*s++);
}
inline void write(const string &s) {
for (char c : s) pc(c);
}
#ifdef OUT_HAS_NEG
template <class T, enable_if_t<_is_signed<T>, int> = 0>
inline void write(T x) {
char buffer[numeric_limits<T>::digits10 + 1];
int digits = 0;
if (x >= 0) do
buffer[digits++] = (x % 10) | 48, x /= 10;
while (x);
else {
pc(45);
do buffer[digits++] = -(x % 10) | 48, x /= 10;
while (x);
}
while (digits) pc(buffer[--digits]);
}
template <class T, enable_if_t<_is_unsigned<T>, int> = 0>
#else
template <class T, enable_if_t<_is_integer<T>, int> = 0>
#endif
inline void write(T x) {
char buffer[numeric_limits<T>::digits10 + 1];
int digits = 0;
do buffer[digits++] = (x % 10) | 48, x /= 10;
while (x);
while (digits) pc(buffer[--digits]);
}
template <int N>
struct _tuple_io_helper {
template <class... T>
static inline void _read(tuple<T...> &x) {
_tuple_io_helper<N - 1>::_read(x), read(get<N - 1>(x));
}
template <class... T>
static inline void _write(const tuple<T...> &x) {
_tuple_io_helper<N - 1>::_write(x), pc(32), write(get<N - 1>(x));
}
};
template <>
struct _tuple_io_helper<1> {
template <class... T>
static inline void _read(tuple<T...> &x) {
read(get<0>(x));
}
template <class... T>
static inline void _write(const tuple<T...> &x) {
write(get<0>(x));
}
};
template <class... T>
inline void read(tuple<T...> &x) {
_tuple_io_helper<sizeof...(T)>::_read(x);
}
template <class... T>
inline void write(const tuple<T...> &x) {
_tuple_io_helper<sizeof...(T)>::_write(x);
}
template <class T1, class T2>
inline void read(pair<T1, T2> &x) {
read(x.first), read(x.second);
}
template <class T1, class T2>
inline void write(const pair<T1, T2> &x) {
write(x.first), pc(32), write(x.second);
}
template <class T1, class... T2>
inline void read(T1 &x, T2 &...y) {
read(x), read(y...);
}
template <class... T>
inline void read_cstr(char *x, T *...y) {
read_cstr(x), read_cstr(y...);
}
template <class T1, class... T2>
inline void write(const T1 &x, const T2 &...y) {
write(x), write(y...);
}
template <class... T>
inline void write_cstr(const char *x, const T *...y) {
write_cstr(x), write_cstr(y...);
}
template <class T>
inline void print(const T &x) {
write(x);
}
inline void print_cstr(const char *x) { write_cstr(x); }
template <class T1, class... T2>
inline void print(const T1 &x, const T2 &...y) {
print(x), pc(32), print(y...);
}
template <class... T>
inline void print_cstr(const char *x, const T *...y) {
print_cstr(x), pc(32), print_cstr(y...);
}
inline void println() { pc(10); }
inline void println_cstr() { pc(10); }
template <class... T>
inline void println(const T &...x) {
print(x...), pc(10);
}
template <class... T>
inline void println_cstr(const T *...x) {
print_cstr(x...), pc(10);
}
} // namespace FastIO
using namespace FastIO;
template <typename T>
inline void clear(T &x) {
T y;
swap(x, y);
}
template <uint32_t mod = 998244353>
class Modint {
private:
static constexpr uint32_t get_r() {
uint32_t ret = mod;
for (int i = 0; i < 4; i++) ret *= 2 - mod * ret;
return ret;
}
static constexpr uint32_t r = get_r();
static constexpr uint32_t n2 = -uint64_t(mod) % mod;
static_assert(r * mod == 1 && mod < (1 << 30) && mod & 1);
uint32_t data;
public:
constexpr Modint() : data(0) {}
template <class int_t>
constexpr Modint(const int_t x)
: data(reduce(
uint64_t((sizeof(int_t) < sizeof(uint32_t) ? x : x % int_t(mod)) +
mod) *
n2)){};
static constexpr uint32_t reduce(const uint64_t x) {
return (x + uint64_t(uint32_t(x) * (-r)) * mod) >> 32;
}
constexpr Modint &operator+=(const Modint &r) {
if (int32_t(data += r.data - 2 * mod) < 0) {
data += 2 * mod;
}
return *this;
}
constexpr Modint &operator-=(const Modint &r) {
if (int32_t(data -= r.data) < 0) {
data += 2 * mod;
}
return *this;
}
constexpr Modint &operator*=(const Modint &r) {
return data = reduce((uint64_t)data * r.data), *this;
}
constexpr Modint &operator/=(const Modint &r) { return *this *= r.inv(); }
constexpr friend Modint operator+(Modint l, const Modint &r) {
return l += r;
}
constexpr friend Modint operator-(Modint l, const Modint &r) {
return l -= r;
}
constexpr friend Modint operator*(Modint l, const Modint &r) {
return l *= r;
}
constexpr friend Modint operator/(Modint l, const Modint &r) {
return l /= r;
}
constexpr friend bool operator==(Modint l, const Modint &r) {
return l.value() == r.value();
}
constexpr Modint operator-() const { return Modint() - Modint(*this); }
template <class int_t>
constexpr Modint pow(int_t r) const {
Modint res(1), w(*this);
for (; r; r >>= 1, w *= w)
if (r & 1) res *= w;
return res;
}
constexpr Modint inv() const { return pow(mod - 2); }
constexpr uint32_t value() const {
uint32_t res = reduce(data);
return res >= mod ? res - mod : res;
}
};
using modint = Modint<>;
namespace cmaths {
const int FACMAX = 1e7 + 10;
modint fac[FACMAX], ifac[FACMAX], inv[FACMAX];
inline void initfac(int n) {
fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i;
}
inline void initifac(int n) {
ifac[n] = fac[n].inv();
for (int i = n - 1; ~i; i--) ifac[i] = ifac[i + 1] * (i + 1);
}
inline modint C(int a, int b) {
return a < b ? 0 : fac[a] * ifac[b] * ifac[a - b];
}
inline modint A(int a, int b) { return a < b ? 0 : fac[a] * ifac[a - b]; }
inline void getInv(int k) {
inv[1] = 1;
for (int i = 2; i <= k; ++i) inv[i] = ifac[i] * fac[i - 1];
}
inline void initall(int n = FACMAX - 2) { initfac(n), initifac(n), getInv(n); }
}; // namespace cmaths
using namespace cmaths;
int n, cnt;
inline modint solve(int len) {
modint ans = 0;
for (int k = 1; k <= len; k++) {
for (int j = 1; j * k <= len; j++) {
if (len - j * k - j >= 0)
ans += C(len - j * k, j) * modint(2).pow(len - j * k - j) *
modint(-1).pow(j - 1);
if (len - j * k - (j - 1) >= 0)
ans += C(len - j * k, j - 1) *
modint(2).pow(len - j * k - (j - 1)) *
modint(-1).pow(j - 1);
}
}
return ans;
}
const int N = 2e5 + 10;
modint pw[N];
inline modint calc(int x, int y, int z) {
modint res = z * modint(2).pow(x);
for (int i = z + 1; i <= x + y; i++)
for (int j = 1, k = i; k <= x + y; j++, k += i) {
if (x - k - j >= 0) res += (j & 1 ? 1 : -1) * C(x - k, j) * pw[x - k - j];
if (x - max(0, i - y) - k + i - (j - 1) >= 0) res += (j & 1 ? 1 : -1) * C(x - max(0, i - y) - k + i, j - 1) * pw[x - max(0, i - y) - k + i - (j - 1)];
}
return res;
}
string lim;
int main() {
initall();
pw[0] = 1;
string str;
read(str);
modint mn = 0;
for (char v : str) mn = mn * 2 + (v - '0');
modint ans = solve(str.size() - 1);
lim = str, lim.erase(lim.begin());
int n = lim.size();
for (int i = 1; i <= n + 1; i++) pw[i] = pw[i - 1] * 2;
int cur = 1, mx = 1;
for (int i = n; i; i--)
if (lim[n - i] == '0')
cur++;
else
ans += calc(i - 1, cur + 1, mx), mx = max(mx, cur), cur = 0;
println((ans + mn).value());
return 0;
}
详细
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 77ms
memory: 121144kb
input:
110
output:
15
result:
ok 1 number(s): "15"
Test #2:
score: 10
Accepted
time: 76ms
memory: 120988kb
input:
101
output:
12
result:
ok 1 number(s): "12"
Subtask #2:
score: 10
Accepted
Dependency #1:
100%
Accepted
Test #3:
score: 10
Accepted
time: 82ms
memory: 121172kb
input:
111110
output:
198
result:
ok 1 number(s): "198"
Test #4:
score: 10
Accepted
time: 71ms
memory: 120780kb
input:
1001001
output:
253
result:
ok 1 number(s): "253"
Subtask #3:
score: 20
Accepted
Dependency #2:
100%
Accepted
Test #5:
score: 20
Accepted
time: 60ms
memory: 121164kb
input:
10100011000100111
output:
386882
result:
ok 1 number(s): "386882"
Test #6:
score: 20
Accepted
time: 56ms
memory: 120784kb
input:
111010011111010110
output:
1107742
result:
ok 1 number(s): "1107742"
Subtask #4:
score: 5
Accepted
Test #7:
score: 5
Accepted
time: 80ms
memory: 120648kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
412796008
result:
ok 1 number(s): "412796008"
Test #8:
score: 5
Accepted
time: 78ms
memory: 121204kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
818656648
result:
ok 1 number(s): "818656648"
Subtask #5:
score: 5
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Test #9:
score: 5
Accepted
time: 73ms
memory: 121344kb
input:
10000000100000010010011110111101101110000000000001100000011000111111010011010101010000101001110110010001100110000110111101000101001111101111001010001001011101011111010000100010111100110000001101111
output:
703266161
result:
ok 1 number(s): "703266161"
Test #10:
score: 5
Accepted
time: 79ms
memory: 120940kb
input:
110100000100001000101000010010101000110111101010110000101001001100100111000011100101110110010000001111010011101001111110110010001110011101001111010101100100010011101010101111111111010110001100100110
output:
330527406
result:
ok 1 number(s): "330527406"
Subtask #6:
score: 5
Accepted
Dependency #4:
100%
Accepted
Test #11:
score: 5
Accepted
time: 61ms
memory: 120944kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
340672883
result:
ok 1 number(s): "340672883"
Test #12:
score: 5
Accepted
time: 87ms
memory: 121428kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
555946758
result:
ok 1 number(s): "555946758"
Subtask #7:
score: 10
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Test #13:
score: 10
Accepted
time: 127ms
memory: 121528kb
input:
110011100110101000000110101010111111001101101011010110100100110010111110110110000111011001110000101111110111011111000110001011011011101100001100100011010010111111010110010000101001001000100001100100000001000111110100000101001011100001100011011110110101101111110011100111001010001010001111001110111100...
output:
324123594
result:
ok 1 number(s): "324123594"
Test #14:
score: 10
Accepted
time: 135ms
memory: 121032kb
input:
110100110100110110001011100000011010000010000101100100001101100100110000101000111001111100001110001001101010110010111101000100111010001011001110101010001101111010000011000010110011000011100101110100000001011100111000101111010100001101011010100101110000010001101001000100111001101101110000101101011011...
output:
209285599
result:
ok 1 number(s): "209285599"
Subtask #8:
score: 10
Accepted
Dependency #6:
100%
Accepted
Test #15:
score: 10
Accepted
time: 326ms
memory: 121820kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
468567454
result:
ok 1 number(s): "468567454"
Test #16:
score: 10
Accepted
time: 511ms
memory: 121736kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
12752860
result:
ok 1 number(s): "12752860"
Subtask #9:
score: 0
Time Limit Exceeded
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Dependency #7:
100%
Accepted
Dependency #8:
100%
Accepted
Test #17:
score: 0
Time Limit Exceeded
input:
101100010100101011010110001111101101001010000111001111000100110110010111101100011011011111010110000000011110000010100110111110110001101001101101001110101110011000010100100101000011000010000101011001011011000000100111011110100010000100001101011110100101110000100011000101100000111111100110000111010000...