QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#783233 | #9785. Shrooks | hos_lyric | WA | 33ms | 3916kb | C++14 | 6.6kb | 2024-11-26 02:27:55 | 2024-11-26 02:27:57 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
/*
\exists naname square containing all points:
a <= x+y <= a + N
b <= -x+y <= b + N
center (x, y) must satisfy:
2x, 2y \in \Z
x - N/2 <= 1 <= N <= x + N/2
y - N/2 <= 1 <= N <= y + N/2
<=>
2x, 2y \in \Z
N/2 <= x <= N/2 + 1
N/2 <= y <= N/2 + 1
<=>
(x, y) = (N/2 + s/2, N/2 + t/2) for s, t \in {0,1,2}
<=>
(x+y, -x+y) = (N + s/2 + t/2, -s/2 + t/2) for s, t \in {0,1,2}
a = N/2 + s/2 + t/2
b = -N/2 - s/2 + t/2
N = 6
(s, t) = (0, 0) (similar for (s, t) = (0, 2), (2, 0), (2, 2))
.###..
#...#.
#.o..#
#...#.
.#.#..
..#...
(s, t) = (1, 1)
..##..
.#..#.
#....#
#....#
.#..#.
..##..
N = 7
(s, t) = (0, 1) (similar for (s, t) = (1, 0), (1, 2), (2, 1))
..###..
.#...#.
#.....#
#.....#
.#...#.
..#.#..
...#...
others are impossible
*/
int N;
vector<int> A;
vector<int> avail;
Mint solve(int a0, int a1, int b0, int b1) {
if (!(a0 <= a1 && b0 <= b1)) return 0;
vector<int> freq(N + 1, 0);
for (int x = 1; x <= N; ++x) {
int y0 = 1, y1 = N;
chmax(y0, a0 - x); chmin(y1, a1 - x);
chmax(y0, b0 + x); chmin(y1, b1 + x);
// cerr<<" "<<x<<" "<<y0<<" "<<y1<<endl;
if (~A[x]) {
if (!(y0 <= A[x] && A[x] <= y1)) return 0;
} else {
if (!(y0 <= y1)) return 0;
++freq[avail[y1] - avail[y0 - 1]];
}
}
Mint ret = 1;
int k = 0;
for (int l = 1; l <= N; ++l) for (; freq[l]--; ) ret *= (l - k++);
return ret;
}
int main() {
for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
scanf("%d", &N);
A.assign(N + 2, -1);
for (int x = 1; x <= N; ++x) {
scanf("%d", &A[x]);
}
avail.assign(N + 1, 0);
for (int y = 1; y <= N; ++y) avail[y] = 1;
for (int x = 1; x <= N; ++x) if (~A[x]) avail[A[x]] = 0;
for (int y = 1; y <= N; ++y) avail[y] += avail[y - 1];
int len = 0;
int ss[5], ts[5];
for (int s = 0; s <= 2; ++s) for (int t = 0; t <= 2; ++t) if (!((N ^ s ^ t) & 1)) {
ss[len] = s;
ts[len] = t;
++len;
}
Mint ans = 0;
for (int p = 1; p < 1 << len; ++p) {
int a0 = 1 + 1, a1 = N + N;
int b0 = -N + 1, b1 = -1 + N;
for (int i = 0; i < len; ++i) if (p >> i & 1) {
const int s = ss[i], t = ts[i];
const int a = ( N + s + t) / 2;
const int b = (-N - s + t) / 2;
chmax(a0, a); chmin(a1, a + N);
chmax(b0, b); chmin(b1, b + N);
}
const Mint res = solve(a0, a1, b0, b1);
// cerr<<"p = "<<p<<"; "<<a0<<" "<<a1<<" "<<b0<<" "<<b1<<"; "<<(__builtin_parity(p)?-1:+1)<<" "<<res<<endl;
ans -= (__builtin_parity(p)?-1:+1) * res;
}
printf("%u\n", ans.x);
}
#ifndef LOCAL
break;
#endif
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3916kb
input:
6 2 1 2 3 -1 -1 -1 4 1 -1 -1 -1 5 1 -1 -1 -1 5 6 3 -1 -1 -1 -1 4 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
output:
1 4 1 0 6 92
result:
ok 6 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3888kb
input:
6 2 1 2 3 -1 -1 -1 4 1 -1 -1 -1 5 1 -1 -1 -1 5 6 3 -1 -1 -1 -1 4 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
output:
1 4 1 0 6 92
result:
ok 6 numbers
Test #3:
score: -100
Wrong Answer
time: 33ms
memory: 3820kb
input:
26874 7 -1 -1 7 1 5 3 -1 7 -1 -1 5 3 6 -1 7 7 -1 7 -1 2 3 6 -1 7 -1 2 7 1 5 3 -1 7 3 -1 2 6 1 4 -1 7 4 -1 5 6 1 -1 3 7 -1 -1 4 -1 7 2 -1 7 -1 6 -1 5 4 3 -1 7 6 7 1 2 5 4 -1 7 -1 5 -1 4 2 3 6 7 -1 4 3 5 7 6 -1 7 6 -1 -1 -1 7 5 -1 7 -1 -1 2 -1 4 -1 3 7 -1 -1 2 -1 6 -1 4 7 -1 5 6 2 7 4 -1 7 -1 -1 6 -1 ...
output:
0 0 0 0 1 0 4 3 0 0 1 0 2 0 1 18 0 0 1 0 2 0 2 0 0 1 1 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1 3 2 0 0 0 0 0 0 0 3 0 2 0 0 0 2 0 2 0 0 2 0 2 2 0 0 0 0 0 2 1 26 3 1 0 0 0 0 5 0 2 1 4 1 2 1 0 0 0 0 1 0 0 3 2 1 0 0 1 0 0 6 0 1 0 0 0 6 1 0 0 1 0 0 2 0 0 0 0 1 2 0 2 1 2 0 0 1 0 1 1 0 0 0 0 0 6 2 1 0 0 0 10 0 0...
result:
wrong answer 5th numbers differ - expected: '0', found: '1'