QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#773097#9309. Graphhos_lyric#AC ✓477ms9664kbC++1411.2kb2024-11-23 00:52:462024-11-23 00:52:46

Judging History

你现在查看的是最新测评结果

  • [2024-11-23 00:52:46]
  • 评测
  • 测评结果:AC
  • 用时:477ms
  • 内存:9664kb
  • [2024-11-23 00:52:46]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


// quo[i - 1] < x <= quo[i] <=> floor(N/x) = quo[len - i]  (1 <= i <= len - 1)
struct Quotients {
  long long N;
  int N2, N3, N4, N6;
  int len;
  explicit Quotients(long long N_ = 0) : N(N_) {
    N2 = sqrt(static_cast<long double>(N));
    N3 = cbrt(static_cast<long double>(N));
    for (; static_cast<long long>(N3) * N3 * N3 < N; ++N3) {}
    for (; static_cast<long long>(N3) * N3 * N3 > N; --N3) {}
    N4 = sqrt(static_cast<long double>(N2));
    N6 = sqrt(static_cast<long double>(N3));
    len = 2 * N2 + ((static_cast<long long>(N2) * (N2 + 1) <= N) ? 1 : 0);
  }
  long long operator[](int i) const {
    return (i <= N2) ? i : (N / (len - i));
  }
  int indexOf(long long x) const {
    return (x <= N2) ? x : (len - (N / x));
  }
  friend std::ostream &operator<<(std::ostream &os, const Quotients &quo) {
    os << "[";
    for (int i = 0; i < quo.len; ++i) {
      if (i) os << ", ";
      os << quo[i];
    }
    os << "]";
    return os;
  }
};

template <class T> struct Dirichlet {
  Quotients quo;
  vector<T> ts;
  explicit Dirichlet(long long N_ = 0) : quo(N_), ts(quo.len) {}
  T operator[](int i) const { return ts[i]; }
  T &operator[](int i) { return ts[i]; }
  T operator()(long long x) const { return ts[quo.indexOf(x)]; }
  T &operator()(long long x) { return ts[quo.indexOf(x)]; }
  T point(int i) const { return ts[i] - ts[i - 1]; }
  friend std::ostream &operator<<(std::ostream &os, const Dirichlet &A) {
    os << "[";
    for (int i = 0; i < A.quo.len; ++i) {
      if (i) os << ", ";
      os << A.quo[i] << ":" << A.ts[i];
    }
    os << "]";
    return os;
  }

  Dirichlet &operator+=(const Dirichlet &A) {
    assert(quo.N == A.quo.N);
    for (int i = 0; i < quo.len; ++i) ts[i] += A.ts[i];
    return *this;
  }
  Dirichlet &operator-=(const Dirichlet &A) {
    assert(quo.N == A.quo.N);
    for (int i = 0; i < quo.len; ++i) ts[i] -= A.ts[i];
    return *this;
  }
  Dirichlet &operator*=(const T &t) {
    for (int i = 0; i < quo.len; ++i) ts[i] *= t;
    return *this;
  }
  Dirichlet operator+() const {
    return *this;
  }
  Dirichlet operator-() const {
    Dirichlet A(quo.N);
    for (int i = 0; i < quo.len; ++i) A.ts[i] = -ts[i];
    return A;
  }
  Dirichlet operator+(const Dirichlet &A) const { return Dirichlet(*this) += A; }
  Dirichlet operator-(const Dirichlet &A) const { return Dirichlet(*this) -= A; }
  Dirichlet operator*(const T &t) const { return Dirichlet(*this) *= t; }
  friend Dirichlet operator*(const T &t, const Dirichlet &A) { return A * t; }

  // Assumes a: completely multiplicative.
  // a(n) *= [n: prime]
  // O(N^(3/4) log(N)^-1) time (O(N^(3/4)) if broken)
  // for p: prime <= N^(1/2) (incr.):
  //   for p^2 <= n <= N (decr.):
  //     A(n) -= a(p) (A(n/p) - A(p-1))
  void primeSum() {
    vector<int> isPrime(quo.N2 + 1, 1);
    isPrime[0] = isPrime[1] = 0;
    for (int p = 2; p <= quo.N2; ++p) if (isPrime[p]) {
      for (int n = 2 * p; n <= quo.N2; n += p) isPrime[n] = 0;
    }
    Dirichlet &A = *this;
    for (int p = 2; p <= quo.N2; ++p) if (isPrime[p]) {
      const T ap = A.point(p);
      if (ap) {
        const long long p2 = static_cast<long long>(p) * p;
        for (int i = quo.len; quo[--i] >= p2; ) {
          A[i] -= ap * (A(quo[i] / p) - A[p - 1]);
        }
      }
    }
    for (int i = 1; i < quo.len; ++i) A[i] -= 1;
  }

  // Assumes a(n) = [n: prime] f(n).
  // Makes a to be multiplicative, a(p^e) = f(p^e).
  //   f(p, e, p^e) (e >= 2) should return f(p^e).
  // O(N^(3/4) log(N)^-1) time
  // for p: prime <= N^(1/2) (decr.):
  //   for p^2 <= n <= N (decr.):
  //     A(n) += \sum[e>=1,p^(e+1)<=n] (f(p^e) (A(n/p) - A(p)) + f(p^(e+1)))
  template <class F> void multiplicativeSum(F f) {
    vector<int> isPrime(quo.N2 + 1, 1);
    isPrime[0] = isPrime[1] = 0;
    for (int p = 2; p <= quo.N2; ++p) if (isPrime[p]) {
      for (int n = 2 * p; n <= quo.N2; n += p) isPrime[n] = 0;
    }
    Dirichlet &A = *this;
    for (int i = 1; i < quo.len; ++i) A[i] += 1;
    for (int p = quo.N2; p >= 2; --p) if (isPrime[p]) {
      vector<long long> pps{1, p};
      vector<T> fs{1, A.point(p)};
      for (int e = 2; pps.back() <= quo.N / p; ++e) {
        pps.push_back(pps.back() * p);
        fs.push_back(f(p, e, pps.back()));
      }
      for (int i = quo.len; quo[--i] >= pps[2]; ) {
        long long nn = quo[i];
        for (int e = 1; (nn /= p) >= p; ++e) {
          A[i] += fs[e] * (A(nn) - A[p]) + fs[e + 1];
        }
      }
    }
  }

  // a(n) = n^k
  Dirichlet Id(int k) const;
  // a(n) = [n: prime] n^k
  Dirichlet IdPrime(int k) const;
  // a(p) = \sum[k] coefs[k] p^k
  // a(p^e) = f(p, e, p^e)  (e >= 2)
  template <class F>
  Dirichlet IdMultiplicative(const vector<T> &coefs, F f) const;
};

template <class T> T powerSum(int k, long long n) {
  if (k == 0) {
    return T(n);
  } else if (k == 1) {
    long long ns[2] = {n, n + 1};
    ns[n % 2] /= 2;
    return T(ns[0]) * T(ns[1]);
  } else if (k == 2) {
    long long ns[3] = {n, 2 * n + 1, n + 1};
    ns[n % 2 * 2] /= 2;
    ns[n % 3] /= 3;
    return T(ns[0]) * T(ns[1]) * T(ns[2]);
  } else if (k == 3) {
    const T t = powerSum<T>(1, n);
    return t * t;
  } else if (k == 4) {
    long long ns[5] = {n, n - 1, 2 * n + 1, n + 2, n + 1};
    ns[n % 2] /= 2;
    ns[n % 5] /= 5;
    return T(ns[0]) * T(ns[1]) * T(ns[2]) * T(ns[3]) * T(ns[4]) + powerSum<T>(2, n);
  } else if (k == 5) {
    long long ns[3] = {n, n - 1, n + 1};
    ns[n % 2] /= 2;
    ns[n % 3] /= 3;
    return T(ns[0]) * T(ns[1]) * T(ns[2]) * T(n) * T(n + 1) * T(n + 2) + powerSum<T>(3, n);
  } else {
    assert(false);
  }
}
template <class T> Dirichlet<T> Id(int k, long long N) {
  Dirichlet<T> A(N);
  const Quotients quo = A.quo;
  for (int n = 1; n <= quo.N2; ++n) {
    T t = 1;
    for (int j = 0; j < k; ++j) t *= n;
    A[n] = A[n - 1] + t;
  }
  for (int i = quo.N2 + 1; i < quo.len; ++i) A[i] = powerSum<T>(k, quo[i]);
  return A;
}
template <class T> Dirichlet<T> IdPrime(int k, long long N) {
  auto A = Id<T>(k, N);
  A.primeSum();
  return A;
}
template <class T, class F>
Dirichlet<T> IdMultiplicative(const vector<T> &coefs, F f, long long N) {
  Dirichlet<T> A(N);
  for (int k = 0; k < static_cast<int>(coefs.size()); ++k) if (coefs[k]) {
    A += coefs[k] * A.IdPrime(k);
  }
  A.multiplicativeSum(f);
  return A;
}

template <class T> Dirichlet<T> Dirichlet<T>::Id(int k) const {
  return ::Id<T>(k, quo.N);
}
template <class T> Dirichlet<T> Dirichlet<T>::IdPrime(int k) const {
  return ::IdPrime<T>(k, quo.N);
}
template <class T> template <class F>
Dirichlet<T> Dirichlet<T>::IdMultiplicative(const vector<T> &coefs, F f) const {
  return ::IdMultiplicative<T>(coefs, f, quo.N);
}

////////////////////////////////////////////////////////////////////////////////

/*
  connect for d = N,...,1
  (pi(N/d) - pi(N/d/2) + 1) are isolated, others are connected
*/

int main() {
  Int N;
  for (; ~scanf("%lld", &N); ) {
    const auto pi = IdPrime<Int>(0, N);
    const auto &quo = pi.quo;
    Mint ans = 1;
    for (int i = 1; i < quo.len; ++i) {
      const Int n = quo[quo.len - i];
      const Int isol = pi(n) - pi(n/2) + 1;
      const Mint t = (n - isol) ? ((n - isol) * Mint(n).pow((isol + 1) - 2)) : Mint(n).pow(n - 2);
// cerr<<"("<<quo[i-1]<<", "<<quo[i]<<"]: "<<n<<" "<<isol<<" "<<t<<endl;
      ans *= t.pow(quo[i] - quo[i - 1]);
    }
    printf("%u\n", ans.x);
  }
  return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 4160kb

input:

4

output:

8

result:

ok answer is '8'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3900kb

input:

2

output:

1

result:

ok answer is '1'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3784kb

input:

123

output:

671840470

result:

ok answer is '671840470'

Test #4:

score: 0
Accepted
time: 1ms
memory: 3876kb

input:

233

output:

353738465

result:

ok answer is '353738465'

Test #5:

score: 0
Accepted
time: 1ms
memory: 3960kb

input:

5981

output:

970246821

result:

ok answer is '970246821'

Test #6:

score: 0
Accepted
time: 1ms
memory: 3760kb

input:

86422

output:

897815688

result:

ok answer is '897815688'

Test #7:

score: 0
Accepted
time: 1ms
memory: 4092kb

input:

145444

output:

189843901

result:

ok answer is '189843901'

Test #8:

score: 0
Accepted
time: 1ms
memory: 3968kb

input:

901000

output:

819449452

result:

ok answer is '819449452'

Test #9:

score: 0
Accepted
time: 1ms
memory: 3972kb

input:

1000000

output:

113573943

result:

ok answer is '113573943'

Test #10:

score: 0
Accepted
time: 0ms
memory: 3928kb

input:

23333333

output:

949849384

result:

ok answer is '949849384'

Test #11:

score: 0
Accepted
time: 2ms
memory: 3816kb

input:

102850434

output:

604886751

result:

ok answer is '604886751'

Test #12:

score: 0
Accepted
time: 20ms
memory: 4064kb

input:

998244353

output:

0

result:

ok answer is '0'

Test #13:

score: 0
Accepted
time: 20ms
memory: 3984kb

input:

1000000007

output:

318420284

result:

ok answer is '318420284'

Test #14:

score: 0
Accepted
time: 33ms
memory: 4172kb

input:

2147483547

output:

688759898

result:

ok answer is '688759898'

Test #15:

score: 0
Accepted
time: 55ms
memory: 4436kb

input:

5120103302

output:

116870489

result:

ok answer is '116870489'

Test #16:

score: 0
Accepted
time: 150ms
memory: 6216kb

input:

19834593299

output:

523663743

result:

ok answer is '523663743'

Test #17:

score: 0
Accepted
time: 288ms
memory: 7556kb

input:

52500109238

output:

195086665

result:

ok answer is '195086665'

Test #18:

score: 0
Accepted
time: 416ms
memory: 8840kb

input:

84848352911

output:

107959260

result:

ok answer is '107959260'

Test #19:

score: 0
Accepted
time: 477ms
memory: 9664kb

input:

99824435322

output:

0

result:

ok answer is '0'

Test #20:

score: 0
Accepted
time: 465ms
memory: 9576kb

input:

99999999354

output:

316301711

result:

ok answer is '316301711'

Test #21:

score: 0
Accepted
time: 463ms
memory: 9420kb

input:

100000000000

output:

396843576

result:

ok answer is '396843576'

Extra Test:

score: 0
Extra Test Passed