QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#77138 | #5506. Hyperloop | zaneyu | WA | 10545ms | 47800kb | C++20 | 4.0kb | 2023-02-13 04:50:13 | 2023-02-13 04:50:17 |
Judging History
answer
/*input
2
4 6
1 2 1
1 3 2
2 3 1
2 4 2
3 4 1
1 4 4
6 11
1 2 9
2 3 12
3 4 3
4 5 5
5 6 10
6 1 22
2 4 9
3 6 1
4 6 5
2 5 2
3 5 8
*/
#include<bits/stdc++.h>
using namespace std;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<long long,null_type,less_equal<long long>,rb_tree_tag,tree_order_statistics_node_update> indexed_set;
//#pragma GCC target("avx2")
//order_of_key #of elements less than x
// find_by_order kth element
using ll=long long;
using ld=long double;
using pii=pair<ll,ll>;
#define f first
#define s second
#define pb push_back
#define REP(i,n) for(int i=0;i<n;i++)
#define REP1(i,n) for(ll i=1;i<=n;i++)
#define FILL(n,x) memset(n,x,sizeof(n))
#define ALL(_a) _a.begin(),_a.end()
#define sz(x) (int)x.size()
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()),c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
const ll maxn=1e5+5;
const ll maxlg=__lg(maxn)+2;
const ll INF64=4e18;
const int INF=0x3f3f3f3f;
const ll MOD=998244353;
const ld PI=acos(-1);
const ld eps=1e-6;
#define lowb(x) x&(-x)
#define MNTO(x,y) x=min(x,(__typeof__(x))y)
#define MXTO(x,y) x=max(x,(__typeof__(x))y)
template<typename T1,typename T2>
ostream& operator<<(ostream& out,pair<T1,T2> P){
out<<P.f<<' '<<P.s;
return out;
}
template<typename T>
ostream& operator<<(ostream& out,vector<T> V){
REP(i,sz(V)) out<<V[i]+1<<((i!=sz(V)-1)?" ":"\n");
return out;
}
ll mult(ll a,ll b){
return a*b%MOD;
}
ll mypow(ll a,ll b){
a%=MOD;
if(a==0) return 0;
if(b<=0) return 1;
ll res=1LL;
while(b){
if(b&1) res=(res*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return res;
}
vector<pii> g[maxn],v[maxn];
bool vis[maxn];
vector<int> top;
ll ds[maxn],dt[maxn];
int n;
void dfs(int u){
if(vis[u]) return;
vis[u]=1;
for(auto x:v[u]){
if(dt[x.f]+ds[u]+x.s==ds[n-1]){
g[u].pb(x);
dfs(x.f);
}
}
top.pb(u);
}
int mx;
void dfs2(int u){
if(vis[u]) return;
vis[u]=1;
for(auto x:v[u]){
if(dt[x.f]+ds[u]+(x.s==mx)==ds[n-1]){
if(x.s==mx) x.s=0;
g[u].pb(x);
dfs2(x.f);
}
}
}
void dij(int u,ll dist[]){
priority_queue<pii,vector<pii>,greater<pii>> pq;
REP(i,n) dist[i]=INF64;
dist[u]=0;
pq.push({0,u});
while(sz(pq)){
int z=pq.top().s;
if(pq.top().f>dist[z]){
pq.pop();
continue;
}
pq.pop();
for(auto x:v[z]){
if(dist[x.f]>dist[z]+x.s){
dist[x.f]=dist[z]+x.s;
pq.push({dist[x.f],x.f});
}
}
}
}
void solve(){
int m;
cin>>n>>m;
REP(i,n) v[i].clear(),g[i].clear(),vis[i]=0;
top.clear();
REP(i,m){
int a,b,c;
cin>>a>>b>>c;
--a,--b;
v[a].pb({b,c}),v[b].pb({a,c});
}
dij(0,ds);
dij(n-1,dt);
dfs(0);
REP(i,n) v[i]=g[i],g[i].clear();
//REP(i,n) cout<<i<<':'<<v[i]<<'\n';
REP(a,300){
mx=0;
REP(i,n){
vis[i]=0;
for(auto x:v[i]){
MXTO(mx,x.s);
}
}
if(mx==0) break;
REP(i,n) ds[i]=dt[i]=-INF;
ds[0]=dt[n-1]=0;
for(int x:top){
for(auto a:v[x]){
MXTO(dt[x],dt[a.f]+(a.s==mx));
}
}
reverse(ALL(top));
for(int x:top){
for(auto a:v[x]){
MXTO(ds[a.f],ds[x]+(a.s==mx));
}
}
reverse(ALL(top));
dfs2(0);
REP(i,n) v[i]=g[i],g[i].clear();
}
int p=0;
vector<int> ans;
while(p!=n-1){
assert(sz(v[p]));
ans.pb(p);
p=v[p][0].f;
}
ans.pb(n-1);
cout<<sz(ans)<<'\n';
cout<<ans;
}
int main(){
ios::sync_with_stdio(false),cin.tie(0);
int t;
cin>>t;
while(t--) solve();
}
详细
Test #1:
score: 100
Accepted
time: 2ms
memory: 8060kb
input:
2 4 6 1 2 1 1 3 2 2 3 1 2 4 2 3 4 1 1 4 4 6 11 1 2 9 2 3 12 3 4 3 4 5 5 5 6 10 6 1 22 2 4 9 3 6 1 4 6 5 2 5 2 3 5 8
output:
3 1 2 4 5 1 2 5 3 6
result:
ok correct (2 test cases)
Test #2:
score: 0
Accepted
time: 580ms
memory: 8540kb
input:
600 320 1547 204 81 13768 232 97 9939 97 249 3719 201 109 14322 183 132 40881 142 143 1 275 186 24548 18 236 7907 30 317 11845 131 130 1 311 300 11704 141 92 41925 174 191 32128 119 120 1 184 183 1 310 309 1 283 270 25477 233 141 36076 212 92 13770 307 110 40656 218 137 14033 180 85 41892 200 199 44...
output:
184 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 10...
result:
ok correct (600 test cases)
Test #3:
score: 0
Accepted
time: 1050ms
memory: 47800kb
input:
4 100000 220000 48940 43355 42347 77914 77913 1 45236 82683 42904 22563 16038 34866 81537 81538 43088 49803 51485 25497 63071 25523 14336 44102 39850 43782 13607 92386 16724 98711 73651 46840 17775 16801 28765 5757 98829 13508 85095 48444 1 9198 43003 32678 14461 14462 1 20245 48742 18138 89120 8911...
output:
35000 1 24721 24648 24647 24700 24305 24272 99392 25020 25051 25070 24443 24448 25109 25096 43056 43055 43054 43053 43052 43051 43050 43049 43048 43047 43046 43045 43044 43043 43042 43041 43040 43039 43038 43037 43036 43035 43034 43033 43032 43031 43030 43029 43028 43027 43026 43025 43024 43023 4302...
result:
ok correct (4 test cases)
Test #4:
score: -100
Wrong Answer
time: 10545ms
memory: 32232kb
input:
4 100000 160000 5533 94547 28459 14992 20984 20548 70133 92512 27510 9013 9012 304 13621 40571 47787 305 306 262 6987 6988 135 16234 16992 40656 26246 49196 27701 19103 60272 44055 91532 91531 38290 70778 68341 35147 32524 32523 13 85786 50300 40970 49277 29735 13942 43446 34519 42455 77623 17031 34...
output:
316 1 2 3 4 5 6 97410 97409 26434 26435 26436 26437 98883 1370 1369 1368 92157 92158 4815 4816 4817 4818 50181 16985 89607 89608 24674 16979 16980 38428 13232 13233 13234 13664 13663 95009 7166 7165 7172 7163 24798 24799 11787 31031 53551 7309 7310 35482 7933 25067 32714 32715 44194 2068 72216 79593...
result:
wrong answer Contestant's path is not optimal lexicographically (test case 1)