QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#768857#9705. MultiplyIllusionaryDominance#WA 2ms3760kbC++203.9kb2024-11-21 14:54:372024-11-21 14:54:38

Judging History

你现在查看的是最新测评结果

  • [2024-11-21 14:54:38]
  • 评测
  • 测评结果:WA
  • 用时:2ms
  • 内存:3760kb
  • [2024-11-21 14:54:37]
  • 提交

answer

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

using namespace __gnu_pbds;
using namespace std;
using ll = long long;
using u64 = unsigned long long;

namespace PR{
    ll fac[1000000], cnt;
    gp_hash_table <ll, bool> h;
    
    ll times(const ll &a, const ll &b, const ll &p) {
        ll res = a * b - (ll)((long double)a / p * b + 0.5) * p;
        return res < 0 ? res + p : res;
    }
    
    ll power(ll a, ll n, ll p) {
        ll ans = 1;
        a %= p;
        while (n) {
            if (n & 1) ans = times(ans, a, p);
            a = times(a, a, p); n >>= 1;
        }
        return ans;
    }
    
    ll gcd(ll a, ll b) {
        while (b) {
            ll t = b;
            b = a % b;
            a = t;
        }
        return a;
    }
    
    bool check(const ll &x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; i ++)
            if (x % i == 0) return false;
        return true;
    }
    
    bool miller_rabin(const ll &n) {
        if (n < 100) return check(n);
        if (h.find(n) != h.end()) return h[n];
        if ((~ n & 1) || n % 3 == 0 || n % 5 == 0 || n % 7 == 0 || n % 11 == 0 || n % 13 == 0 || n % 17 == 0 || n % 19 == 0 || n % 23 == 0 || n % 29 == 0) return false;
        ll b = __builtin_ctzll(n - 1), x = (n - 1) >> b;
        static int prime[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
        for (int i = 0; i < 12; i ++) {
            ll cur = power(prime[i], x, n), nxt;
            for (int j = 1; j <= b && cur != 1; j ++) {
                nxt = times(cur, cur, n);
                if (nxt == 1 && cur != n - 1) {
                    h[n] = 0;
                    return false;
                }
                cur = nxt;
            }
            if (cur != 1) {
                h[n] = 0;
                return false;
            }
        }
        h[n] = 1;
        return true;
    }
    
    ll add(const ll &a, const ll &b, const ll &p) {
        u64 t = (u64)a + (u64)b;
        t -= t < (u64)p ? 0 : p;
        return t;
    }
    
    ll pollard_rho(const ll &n) {
        ll c = (rand() << 15 | rand()) % n + 1, a1 = 0, a2;
        a1 = add(times(a1, a1, n), c, n);
        a2 = add(times(a1, a1, n), c, n);
        while (a1 != a2) {
            ll d = gcd(abs(a1 - a2), n);
            if (d > 1) return d;
            a1 = add(times(a1, a1, n), c, n);
            a2 = add(times(a2, a2, n), c, n);
            a2 = add(times(a2, a2, n), c, n);
        }
        return n;
    }
    
    void Do(ll n) {
        if (n < 2) return ;
        if (miller_rabin(n)) {
            fac[++ cnt] = n;
            return ;
        }
        ll s = sqrt(n);
        if (s * s == n) {
            Do(s); Do(s); return ;
        }
        s = pollard_rho(n);
        while (s == 1 || s == n) s = pollard_rho(n);
        Do(s); Do(n / s);
    }
    
    vector<long long> solve(const ll &n) {
        cnt = 0;
        Do(n);
        sort(fac + 1, fac + cnt + 1);

        vector<long long> re;
        for (int i = 1; i <= cnt; ++ i) re.push_back(fac[i]);
        return re;
    }
};


void solve(){
    int N;
    long long X, Y;
    cin >> N >> X >> Y;

    vector<long long>fac = PR::solve(X);
    vector<long long> A(N + 1);
    for (int i = 1; i <= N; ++ i) cin >> A[i];

    long long ans = 1e18;
    for (int i = 0; i < fac.size(); ++ i){
        long long tot = 1;
        while(i + 1 < fac.size() && fac[i] == fac[i + 1]) ++ i;

        long long sumY = 0, sumA = 0;
        for (__int128 now = fac[i]; now <= Y; now *= fac[i]){
            sumY += Y / now;
            for (int j = 1; j <= N; ++ j) sumA += A[j] / now;
        }
        ans = min(ans, (sumY - sumA) / tot);
    }
    cout << ans << "\n";
}

int main(){
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int T; cin >> T;
    while(T --) solve();
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3604kb

input:

2
3 10 10
2 3 4
2 2 10
1 1

output:

2
8

result:

ok 2 number(s): "2 8"

Test #2:

score: -100
Wrong Answer
time: 2ms
memory: 3760kb

input:

8
929 98210021061137 164832982985885580
43576998167336 157303878397705 212661169553039 169068044677212 17733912750082 101059786177542 56528418806042 170741049344189 128297164019222 208810463591190 96264177952672 70816863413347 116985928070432 56330014332760 10006522486360 110959002803542 15298525649...

output:

1059
95837140
1761303730724
3810060773695
8961243000749
8657430203778550
10413550771595562
2278009069247734

result:

wrong answer 7th numbers differ - expected: '2603387692898890', found: '10413550771595562'