QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#768209 | #8526. Polygon II | ucup-team004 | TL | 3ms | 3864kb | C++23 | 9.1kb | 2024-11-21 02:31:35 | 2024-11-21 02:31:35 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
using u128 = unsigned __int128;
template<class T>
constexpr T power(T a, u64 b, T res = 1) {
for (; b != 0; b /= 2, a *= a) {
if (b & 1) {
res *= a;
}
}
return res;
}
template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
return u64(a) * b % P;
}
template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
res %= P;
return res;
}
constexpr i64 safeMod(i64 x, i64 m) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
constexpr std::pair<i64, i64> invGcd(i64 a, i64 b) {
a = safeMod(a, b);
if (a == 0) {
return {b, 0};
}
i64 s = b, t = a;
i64 m0 = 0, m1 = 1;
while (t) {
i64 u = s / t;
s -= t * u;
m0 -= m1 * u;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
template<std::unsigned_integral U, U P>
struct ModIntBase {
public:
constexpr ModIntBase() : x(0) {}
template<std::unsigned_integral T>
constexpr ModIntBase(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr ModIntBase(T x_) {
using S = std::make_signed_t<U>;
S v = x_ % S(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static U mod() {
return P;
}
constexpr U val() const {
return x;
}
constexpr ModIntBase operator-() const {
ModIntBase res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr ModIntBase inv() const {
return power(*this, mod() - 2);
}
constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
x = mulMod<mod()>(x, rhs.val());
return *this;
}
constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
return *this *= rhs.inv();
}
friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, ModIntBase &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
return os << a.val();
}
friend constexpr std::strong_ordering operator<=>(ModIntBase lhs, ModIntBase rhs) {
return lhs.val() <=> rhs.val();
}
private:
U x;
};
template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;
struct Barrett {
public:
Barrett(u32 m_) : m(m_), im((u64)(-1) / m_ + 1) {}
constexpr u32 mod() const {
return m;
}
constexpr u32 mul(u32 a, u32 b) const {
u64 z = a;
z *= b;
u64 x = u64((u128(z) * im) >> 64);
u32 v = u32(z - x * m);
if (m <= v) {
v += m;
}
return v;
}
private:
u32 m;
u64 im;
};
template<u32 Id>
struct DynModInt {
public:
constexpr DynModInt() : x(0) {}
template<std::unsigned_integral T>
constexpr DynModInt(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr DynModInt(T x_) {
int v = x_ % int(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static void setMod(u32 m) {
bt = m;
}
static u32 mod() {
return bt.mod();
}
constexpr u32 val() const {
return x;
}
constexpr DynModInt operator-() const {
DynModInt res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr DynModInt inv() const {
auto v = invGcd(x, mod());
assert(v.first == 1);
return v.second;
}
constexpr DynModInt &operator*=(const DynModInt &rhs) & {
x = bt.mul(x, rhs.val());
return *this;
}
constexpr DynModInt &operator+=(const DynModInt &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr DynModInt &operator-=(const DynModInt &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr DynModInt &operator/=(const DynModInt &rhs) & {
return *this *= rhs.inv();
}
friend constexpr DynModInt operator*(DynModInt lhs, const DynModInt &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr DynModInt operator+(DynModInt lhs, const DynModInt &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr DynModInt operator-(DynModInt lhs, const DynModInt &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr DynModInt operator/(DynModInt lhs, const DynModInt &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, DynModInt &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const DynModInt &a) {
return os << a.val();
}
friend constexpr std::strong_ordering operator<=>(DynModInt lhs, DynModInt rhs) {
return lhs.val() <=> rhs.val();
}
private:
u32 x;
static Barrett bt;
};
template<u32 Id>
Barrett DynModInt<Id>::bt = 998244353;
using Z = ModInt<1000000007>;
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
std::sort(a.begin(), a.end());
int d = 0;
std::vector dp(1, std::vector<Z>(n + 1));
dp[0][0] = 1;
Z ans = 0;
for (auto a : a) {
while (d < a) {
int m = dp.size() - 1;
std::vector ndp(m / 2 + 1, std::vector<Z>(n + 1));
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= n; j++) {
Z p = 1;
for (int k = 0; j + k <= n; k++) {
if (k) {
p *= -i64(i % 2) << d;
}
ndp[i / 2][j + k] += dp[i][j] * p * comb.invfac(k);
}
}
}
dp = std::move(ndp);
d++;
}
int m = dp.size() - 1;
dp.push_back(std::vector<Z>(n + 1));
for (int i = m; i >= 0; i--) {
for (int j = 0; j <= n; j++) {
dp[i + 1][j] -= dp[i][j];
}
}
Z p = 1;
for (int i = 0; i <= n; i++) {
if (i) {
p *= (1LL << a);
}
ans += dp[0][n - i] * p * comb.invfac(i);
}
}
for (auto a : a) {
ans /= (1LL << a);
}
ans = 1 - ans;
std::cout << ans << "\n";
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3600kb
input:
3 0 2 0
output:
166666668
result:
ok 1 number(s): "166666668"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3860kb
input:
3 0 0 0
output:
500000004
result:
ok 1 number(s): "500000004"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3564kb
input:
3 5 6 7
output:
208333335
result:
ok 1 number(s): "208333335"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
3 0 25 50
output:
889268532
result:
ok 1 number(s): "889268532"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
10 39 11 25 1 12 44 10 46 27 15
output:
913863330
result:
ok 1 number(s): "913863330"
Test #6:
score: 0
Accepted
time: 2ms
memory: 3564kb
input:
57 43 22 3 16 7 5 24 32 25 16 41 28 24 30 28 10 32 48 41 43 34 37 48 34 3 9 21 41 49 25 2 0 36 45 34 33 45 9 42 29 43 9 38 34 44 33 44 6 46 39 22 36 40 37 19 34 3
output:
400729664
result:
ok 1 number(s): "400729664"
Test #7:
score: 0
Accepted
time: 3ms
memory: 3520kb
input:
100 44 32 6 6 6 44 12 32 6 9 23 12 14 23 12 14 23 49 6 14 32 23 49 9 32 24 23 6 32 6 49 23 12 44 24 9 14 6 24 44 24 23 44 44 49 32 49 12 49 49 24 49 12 23 3 14 6 3 3 6 12 3 49 24 49 24 24 32 23 32 49 14 3 24 49 3 32 14 44 24 49 3 32 23 49 44 44 9 23 14 49 9 3 6 44 24 3 3 12 44
output:
32585394
result:
ok 1 number(s): "32585394"
Test #8:
score: -100
Time Limit Exceeded
input:
1000 2 27 0 0 27 0 2 0 27 0 27 27 0 0 0 0 0 2 0 27 0 2 2 0 27 27 0 0 0 27 2 2 2 27 0 2 27 2 0 2 27 0 0 27 0 27 0 0 27 2 27 2 2 27 2 27 0 0 27 0 27 0 2 27 2 2 0 27 27 27 27 0 27 0 27 0 2 2 0 2 2 27 0 0 27 0 0 27 0 2 27 27 2 27 2 0 0 2 27 27 27 27 27 27 2 2 0 2 2 0 2 2 0 27 0 27 2 2 0 27 27 0 0 27 2 2...