QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#766861 | #9254. Random Variables | guosoun | AC ✓ | 876ms | 11156kb | C++17 | 16.1kb | 2024-11-20 18:59:30 | 2024-11-20 18:59:33 |
Judging History
answer
#include <bits/stdc++.h>
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) <
// 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_MATH_HPP
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#endif // ATCODER_MODINT_HPP
using ll = long long;
using mint = atcoder::modint;
void mian() {
int n, m;
std::cin >> n >> m;
std::vector bin(n + 1, std::vector<mint>(n + 1));
for (int i = 0; i <= n; i++) {
bin[i][0] = 1;
for (int j = 1; j <= i; j++) bin[i][j] = bin[i - 1][j] + bin[i - 1][j - 1];
}
std::vector<mint> binm(n + 1);
binm[0] = 1;
for (int i = 1; i <= n; i++) {
binm[i] = binm[i - 1] * (m - i + 1);
}
mint ans = 0;
for (int k = 1; k <= n; k++) {
std::vector dp(n / k + 1, std::vector<mint>(n + 1));
dp[0][0] = 1;
mint cur = 0;
for (int i = 1; i * k <= n && i <= m; i++) {
std::vector<mint> pow(n + 1, 1);
for (int j = 1; j <= n; j++) pow[j] = pow[j - 1] * (m - i);
for (int j = k; j <= n; j++) {
dp[i][j] = dp[i][j - 1] * i + dp[i - 1][j - k] * bin[j - 1][k - 1];
auto t = dp[i][j] * pow[n - j] * bin[n][j] * binm[i];
if (i & 1)
cur += t;
else
cur -= t;
}
}
ans += cur;
}
std::cout << ans.val() << '\n';
}
int main() {
std::cin.tie(0)->sync_with_stdio(0);
int t, mod;
std::cin >> t >> mod;
mint::set_mod(mod);
while (t--) mian();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3576kb
input:
3 123456789 3 2 5 5 7 7
output:
18 7145 2066323
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 1ms
memory: 3632kb
input:
100 2 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #3:
score: 0
Accepted
time: 1ms
memory: 3408kb
input:
100 3 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 0 1 2 0 1 2 0 1 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1
result:
ok 100 lines
Test #4:
score: 0
Accepted
time: 1ms
memory: 3608kb
input:
100 4 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 0 1 2 3 0 1 2 2 2 0 0 2 2 0 0 2 2 3 2 3 0 3 2 3 0 3 2 0 0 0 0 0 0 0 0 0 0 1 2 3 0 1 2 3 0 1 2 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 1 2 3 0 1 2 2 0 2 0 2 0 2 0 2 0
result:
ok 100 lines
Test #5:
score: 0
Accepted
time: 1ms
memory: 3544kb
input:
100 5 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 0 1 2 3 4 0 2 1 2 0 0 2 1 2 0 0 3 3 1 3 0 3 3 1 3 0 4 4 2 4 0 4 4 2 4 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 1 2 3 4 0 2 3 3 2 0 2 3 3 2 0 3 4 1 2 0 3 4 1 2 0 4 4 4 4 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #6:
score: 0
Accepted
time: 1ms
memory: 3576kb
input:
100 6 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 0 1 2 3 4 2 0 0 2 0 0 2 0 0 2 3 0 3 0 3 0 3 0 3 0 4 2 0 4 2 0 4 2 0 4 5 2 3 2 5 0 5 2 3 2 0 0 0 0 0 0 0 0 0 0 1 0 3 4 3 0 1 0 3 4 2 2 0 2 2 0 2 2 0 2 3 0 3 0 3 0 3 0 3 0 4 2 0 4 2 0 4 2 0 4
result:
ok 100 lines
Test #7:
score: 0
Accepted
time: 1ms
memory: 3696kb
input:
100 7 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 0 1 2 3 2 6 5 6 2 0 0 2 6 5 3 4 2 3 6 3 0 3 4 2 4 2 3 5 2 5 0 4 2 3 5 5 3 6 5 4 0 5 5 3 6 0 6 1 1 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 1 2 3 2 1 4 4 1 2 0 2 1 4 3 3 4 3 4 4 0 3 3 4
result:
ok 100 lines
Test #8:
score: 0
Accepted
time: 1ms
memory: 3700kb
input:
100 8 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 7 0 1 2 2 6 4 4 6 2 0 0 2 6 3 2 3 4 3 6 3 0 3 2 4 4 0 0 4 4 0 0 4 4 5 6 3 4 1 2 7 0 5 6 6 4 6 0 6 4 6 0 6 4 7 4 3 0 7 4 3 0 7 4 0 0 0 0 0 0 0 0 0 0 1 6 3 4 5 2 7 0 1 6 2 4 6 0 2 4 6 0 2 4
result:
ok 100 lines
Test #9:
score: 0
Accepted
time: 1ms
memory: 3416kb
input:
100 9 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 7 8 0 1 2 6 3 2 3 6 2 0 0 2 3 0 6 0 6 3 6 3 0 3 4 8 3 4 5 6 4 2 0 4 5 2 0 2 8 0 8 5 0 5 6 0 0 6 0 0 6 0 0 6 7 3 6 1 3 3 4 3 0 7 8 8 6 5 8 3 2 8 0 8 0 0 0 0 0 0 0 0 0 0 1 8 3 4 2 6 7 5 0 1
result:
ok 100 lines
Test #10:
score: 0
Accepted
time: 1ms
memory: 3516kb
input:
100 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 ...
output:
1 2 3 4 5 6 7 8 9 0 2 6 2 0 0 2 6 2 0 0 3 8 1 8 5 8 3 6 3 0 4 4 2 4 0 4 4 2 4 0 5 0 5 0 5 0 5 0 5 0 6 2 8 4 0 6 2 8 4 0 7 8 3 2 5 2 3 8 7 0 8 4 6 2 0 8 4 6 2 0 9 4 9 4 5 4 9 4 9 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #11:
score: 0
Accepted
time: 1ms
memory: 3752kb
input:
100 11 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 ...
output:
1 2 3 4 5 6 7 8 9 10 2 6 1 9 8 9 1 6 2 0 3 7 7 9 8 10 10 3 6 3 4 0 5 5 10 10 8 9 9 6 5 0 4 10 6 7 10 4 2 7 6 10 4 5 3 2 0 7 2 5 7 5 2 8 6 1 6 0 3 6 8 6 6 3 2 4 8 3 6 9 9 8 10 2 8 6 10 9 3 1 10 0 4 3 0 6 0 7 4 9
result:
ok 100 lines
Test #12:
score: 0
Accepted
time: 314ms
memory: 9764kb
input:
10 972033073 576 523187654 758 588616188 30 532959085 476 481773028 573 76725430 520 142462406 865 820120297 687 526533288 913 38106557 67 924529654
output:
259748390 909910217 708973357 300073565 463921261 889897372 587262932 255642402 868975954 14589849
result:
ok 10 lines
Test #13:
score: 0
Accepted
time: 405ms
memory: 11080kb
input:
10 922366485 846 278501607 683 609355362 44 978777279 545 730718412 926 323835432 883 761846029 623 408215612 989 588832935 449 743830620 259 183431187
output:
461786112 672633342 164805246 547995105 9661617 154501063 370848893 402005970 886523490 435107511
result:
ok 10 lines
Test #14:
score: 0
Accepted
time: 407ms
memory: 10864kb
input:
10 13890975 949 837425969 667 981449995 991 564074312 501 604745038 593 640307170 128 408163542 80 976891742 930 710947599 852 333118419 250 333252788
output:
3898759 9290500 7087084 4913904 196250 1746549 9627740 8673120 10274253 10549775
result:
ok 10 lines
Test #15:
score: 0
Accepted
time: 214ms
memory: 8904kb
input:
10 105576445 649 937885257 141 713063090 253 716966251 845 330657011 347 664392407 810 50478969 389 530582574 228 199722046 85 256258366 605 3721959
output:
22721419 27962190 85541228 53950260 35288938 100176945 86409840 102331663 55591445 14790745
result:
ok 10 lines
Test #16:
score: 0
Accepted
time: 272ms
memory: 10012kb
input:
10 445185474 268 687201814 929 296077349 690 202741564 372 661889855 442 989604795 367 456833096 702 862601129 795 37538865 556 131444040 108 645857776
output:
39577672 390323147 423333756 49417686 12978114 278291170 60346062 410583855 68429394 296833176
result:
ok 10 lines
Test #17:
score: 0
Accepted
time: 393ms
memory: 10664kb
input:
10 265384486 870 503808438 959 733458117 126 226376632 979 205878607 747 270352323 339 384431347 373 659485098 597 832514575 832 906898547 12 869891031
output:
54820154 83262107 48675762 32938269 169458409 153632065 105152812 48645927 29870948 83831862
result:
ok 10 lines
Test #18:
score: 0
Accepted
time: 261ms
memory: 9176kb
input:
10 869896294 256 326197921 496 115501273 861 238744067 581 600444623 619 536213251 89 898877607 136 353575223 860 349472278 491 770026371 668 622723560
output:
678111040 344947200 90686837 157367547 295943299 25262829 81930384 532341712 23048077 475131428
result:
ok 10 lines
Test #19:
score: 0
Accepted
time: 492ms
memory: 10900kb
input:
10 692092859 831 647975618 792 737778459 392 768554014 854 612888229 31 148093584 793 559010229 970 237393805 339 914914862 831 979073722 988 738224088
output:
324659472 16793498 421391172 416475848 59704753 347151224 415078841 680610884 397373492 296521551
result:
ok 10 lines
Test #20:
score: 0
Accepted
time: 201ms
memory: 10372kb
input:
10 827165684 577 720722656 383 778750361 951 59165685 502 993162103 589 166261195 500 816688874 40 625075150 331 160531509 394 578798823 181 710984062
output:
736529364 199088527 528654835 586634074 442300715 383600380 707706396 763397655 534310310 338272096
result:
ok 10 lines
Test #21:
score: 0
Accepted
time: 211ms
memory: 10556kb
input:
10 691312083 185 445519030 93 44970277 951 662144708 252 766000017 83 911805458 424 816227326 770 136026896 354 763387805 247 458147285 747 14566368
output:
411209183 132362175 110569626 664410537 241484162 480388660 264805387 294178848 147876955 371900799
result:
ok 10 lines
Test #22:
score: 0
Accepted
time: 876ms
memory: 11156kb
input:
10 691312083 1000 445519030 1000 44970277 1000 662144708 1000 766000017 1000 911805458 1000 816227326 1000 136026896 1000 763387805 1000 458147285 747 14566368
output:
365043118 14826361 571573673 63977538 484010015 499398766 433242788 43269113 412491407 371900799
result:
ok 10 lines
Extra Test:
score: 0
Extra Test Passed