QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#764075 | #9434. Italian Cuisine | asitshouldbe | WA | 0ms | 3984kb | C++20 | 40.7kb | 2024-11-19 23:56:58 | 2024-11-19 23:57:03 |
Judging History
answer
#include <bits/stdc++.h>
#define pi acos(-1.0)
// #define double long double
using namespace std;
typedef long long LL;
const double eps = 1e-8, inf = 1e12;
const int N = 1e2 + 10;
int sgn(double x)
{
if (fabs(x) < eps) return 0;
if (x < 0) return -1;
else return 1;
}
int dsgn(double x, double y)
{
if (fabs(x - y) < eps) return 0;
if (x < y) return -1;
else return 1;
}
inline double sqr(double x) { return x * x; }
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y) { x = _x;y = _y; }
void input() { cin >> x >> y; }
bool operator==(Point b) const { return sgn(x - b.x) == 0 && sgn(y - b.y) == 0; }
bool operator<(Point b) const { return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x; }
Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); }
Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); }
// 叉积
double operator^(const Point &b) const { return x * b.y - y * b.x; }
// 点积
double operator*(const Point &b) const { return x * b.x + y * b.y; }
// 数乘
Point operator*(const double &k) const { return Point(x * k, y * k); }
Point operator/(const double &k) const { return Point(x / k, y / k); }
// 返回长度
double len() { return hypot(x, y); }
// 返回长度的平方
double len2() { return x * x + y * y; }
// 返回两点的距离
double distance(Point p) { return hypot(x - p.x, y - p.y); }
LL distance2(Point p) { return (x - p.x) * (x - p.x) + (y - p.y) * (y - p.y); }
//`计算pa 和 pb 的夹角 就是求这个点看a,b 所成的夹角`
//`测试 LightOJ1203`
double rad(Point a, Point b)
{
Point p = *this;
return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p)));
}
//`绕着p点逆时针旋转angle`
Point rotate(Point p, double angle)
{
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
}
//`化为长度为r的向量`
Point trunc(double r)
{
double l = len();
if (!sgn(l)) return *this;
r /= l;
return Point(x * r, y * r);
}
//`逆时针旋转90度`
Point rotleft() { return Point(-y, x); }
//`顺时针旋转90度`;
Point rotright() { return Point(y, -x); }
};
//`AB X AC`
double cross(Point A, Point B, Point C) { return (B - A) ^ (C - A); }
//`AB*AC`
double dot(Point A, Point B, Point C) { return (B - A) * (C - A); }
struct Line
{
Point s, e;
Line() {}
Line(Point _s, Point _e) { s = _s;e = _e; }
bool operator==(Line v) { return (s == v.s) && (e == v.e); }
//`根据一个点和倾斜角angle确定直线,0<=angle<pi`
Line(Point p, double angle)
{
s = p;
if (sgn(angle - pi / 2) == 0) e = (s + Point(0, 1));
else e = (s + Point(1, tan(angle)));
}
// ax+by+c=0
Line(double a, double b, double c)
{
if (sgn(a) == 0)
{
s = Point(0, -c / b);
e = Point(1, -c / b);
}
else if (sgn(b) == 0)
{
s = Point(-c / a, 0);
e = Point(-c / a, 1);
}
else
{
s = Point(0, -c / b);
e = Point(1, (-c - a) / b);
}
}
void input() { s.input();e.input(); }
void adjust() { if (e < s) swap(s, e); }
// 求线段长度
double length() { return s.distance(e); }
//`返回直线倾斜角 0<=angle<pi`
double angle()
{
double k = atan2(e.y - s.y, e.x - s.x);
// if(sgn(k) < 0)k += pi;
// if(sgn(k-pi) == 0)k -= pi;
return k;
}
bool operator<(Line &v) { return sgn(angle() - v.angle()) == 0 ? ((e - s) ^ (v.e - s)) < 0 : angle() < v.angle(); }
//`点和直线关系`
int relation(Point p)
{
int c = sgn((p - s) ^ (e - s));
if (c < 0) return 1; //`1 在左侧`
else if (c > 0) return 2; //`2 在右侧`
else return 3; //`3 在直线上`
}
//`点在线段上的判断`
bool pointonseg(Point p) { return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0; }
//`两向量平行(对应直线平行或重合)`
bool parallel(Line v) { return sgn((e - s) ^ (v.e - v.s)) == 0; }
//`两向量正交`
bool orthogonal(Line v) { return sgn((e - s) * (v.e - v.s)) == 0; }
//`两直线关系`
int linecrossline(Line v)
{
if ((*this).parallel(v)) //`0 平行`
return v.relation(s) == 3; //`1 重合`
if ((*this).orthogonal(v)) return 3; //`3 正交`
else return 2; //`2 相交`
}
//`两线段相交判断`
int segcrossseg(Line v)
{
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
int d3 = sgn((v.e - v.s) ^ (s - v.s));
int d4 = sgn((v.e - v.s) ^ (e - v.s));
if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2; //`2 规范相交`
return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) || //`1 非规范相交`
(d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) || //`0 不相交`
(d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
(d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
}
//`直线和线段相交判断`
int linecrossseg(Line v)
{
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
if ((d1 ^ d2) == -2) return 2; //`2 规范相交`
return (d1 == 0 || d2 == 0); //`1 非规范相交 0 不相交`
}
//`求两直线的交点 要保证两直线不平行或重合`
Point crosspoint(Line l)
{
Point u = e - s, v = l.e - l.s;
double t = (s - l.s) ^ v / (v ^ u);
return s + u * t;
}
//`返回点p在直线上的投影`
Point lineprog(Point p)
{
Point u = e - s, v = p - s;
return s + u * (u * v / u.len2());
}
// 点到直线的距离
double dispointtoline(Point p) { return fabs((p - s) ^ (e - s)) / length(); }
// 点到线段的距离
double dispointtoseg(Point p)
{
if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)
return min(p.distance(s), p.distance(e));
return dispointtoline(p);
}
//`返回线段到线段的距离 前提是两线段不相交,相交距离就是0了`
double dissegtoseg(Line v)
{
return min(min(dispointtoseg(v.s), dispointtoseg(v.e)), min(v.dispointtoseg(s), v.dispointtoseg(e)));
}
//`返回点p关于直线的对称点`
Point symmetrypoint(Point p)
{
Point pro = lineprog(p);
return pro * 2 - p;
}
};
struct circle
{
Point p; // 圆心
double r; // 半径
circle() {}
circle(Point _p, double _r) { p = _p;r = _r; }
circle(double x, double y, double _r) { p = Point(x, y);r = _r; }
//`三角形的外接圆`
//`需要Point的+ / rotate() 以及Line的crosspoint()`
//`利用两条边的中垂线得到圆心`
//`测试:UVA12304`
circle(Point a, Point b, Point c)
{
Line u = Line((a + b) / 2, ((a + b) / 2) + ((b - a).rotleft()));
Line v = Line((b + c) / 2, ((b + c) / 2) + ((c - b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
//`三角形的内切圆`
//`参数bool t没有作用,只是为了和上面外接圆函数区别`
//`测试:UVA12304`
circle(Point a, Point b, Point c, bool t)
{
Line u, v;
double m = atan2(b.y - a.y, b.x - a.x), n = atan2(c.y - a.y, c.x - a.x);
u.s = a;
u.e = u.s + Point(cos((n + m) / 2), sin((n + m) / 2));
v.s = b;
m = atan2(a.y - b.y, a.x - b.x), n = atan2(c.y - b.y, c.x - b.x);
v.e = v.s + Point(cos((n + m) / 2), sin((n + m) / 2));
p = u.crosspoint(v);
r = Line(a, b).dispointtoseg(p);
}
// 输入
void input() { p.input();cin >> r; }
bool operator==(circle v) { return (p == v.p) && sgn(r - v.r) == 0; }
bool operator<(circle v) const { return ((p < v.p) || ((p == v.p) && sgn(r - v.r) < 0)); }
// 面积
double area() { return pi * r * r; }
// 周长
double circumference() { return 2 * pi * r; }
//`点和圆的关系`
int relation(Point b)
{
double dst = b.distance(p);
if (sgn(dst - r) < 0) return 2; //`2 圆内`
else if (sgn(dst - r) == 0) return 1; //`1 圆上`
return 0; //`0 圆外`
}
//`线段和圆的关系 比较的是圆心到线段的距离和半径的关系`
int relationseg(Line v)
{
double dst = v.dispointtoseg(p);
if (sgn(dst - r) < 0) return 2; //`2 相交`
else if (sgn(dst - r) == 0) return 1; //`1 相切`
return 0; //`0 相离`
}
//`直线和圆的关系 比较的是圆心到直线的距离和半径的关系`
int relationline(Line v)
{
double dst = v.dispointtoline(p);
if (sgn(dst - r) < 0) return 2; //`2 相交`
else if (sgn(dst - r) == 0) return 1; //`1 相切`
return 0; //`0 相离`
}
//`两圆的关系 需要Point的distance`
//`测试:UVA12304`
int relationcircle(circle v)
{
double d = p.distance(v.p);
if (sgn(d - r - v.r) > 0) return 5; //`5 相离`
if (sgn(d - r - v.r) == 0) return 4; //`4 外切`
double l = fabs(r - v.r);
if (sgn(d - r - v.r) < 0 && sgn(d - l) > 0) return 3; //`3 相交`
if (sgn(d - l) == 0) return 2; //`2 内切`
if (sgn(d - l) < 0) return 1; //`1 内含`
}
//`求两个圆的交点 需要relationcircle`
//`测试:UVA12304`
int pointcrosscircle(circle v, Point &p1, Point &p2)
{
int rel = relationcircle(v);
if (rel == 1 || rel == 5) return 0; //`0 无交点`
double d = p.distance(v.p);
double l = (d * d + r * r - v.r * v.r) / (2 * d);
double h = sqrt(r * r - l * l);
Point tmp = p + (v.p - p).trunc(l);
p1 = tmp + ((v.p - p).rotleft().trunc(h));
p2 = tmp + ((v.p - p).rotright().trunc(h));
if (rel == 2 || rel == 4) return 1; //`1 一个交点`
return 2; //`2 两个交点`
}
//`求直线和圆的交点,返回交点个数`
int pointcrossline(Line v, Point &p1, Point &p2)
{
if (!(*this).relationline(v)) return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r * r - d * d);
if (sgn(d) == 0)
{
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e - v.s).trunc(d);
p2 = a - (v.e - v.s).trunc(d);
return 2;
}
//`得到过a,b两点,半径为r1的两个圆`
int gercircle(Point a, Point b, double r1, circle &c1, circle &c2)
{
circle x(a, r1), y(b, r1);
int t = x.pointcrosscircle(y, c1.p, c2.p);
if (!t) return 0;
c1.r = c2.r = r;
return t; //`返回圆的个数`
}
//`得到与直线u相切,过点q,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u, Point q, double r1, circle &c1, circle &c2)
{
double dis = u.dispointtoline(q);
if (sgn(dis - r1 * 2) > 0) return 0;
if (sgn(dis) == 0)
{
c1.p = q + ((u.e - u.s).rotleft().trunc(r1));
c2.p = q + ((u.e - u.s).rotright().trunc(r1));
c1.r = c2.r = r1;
return 2;
}
Line u1 = Line((u.s + (u.e - u.s).rotleft().trunc(r1)), (u.e + (u.e - u.s).rotleft().trunc(r1)));
Line u2 = Line((u.s + (u.e - u.s).rotright().trunc(r1)), (u.e + (u.e - u.s).rotright().trunc(r1)));
circle cc = circle(q, r1);
Point p1, p2;
if (!cc.pointcrossline(u1, p1, p2)) cc.pointcrossline(u2, p1, p2);
c1 = circle(p1, r1);
if (p1 == p2)
{
c2 = c1;
return 1;
}
c2 = circle(p2, r1);
return 2;
}
//`同时与直线u,v相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u, Line v, double r1, circle &c1, circle &c2, circle &c3, circle &c4)
{
if (u.parallel(v)) return 0; // 两直线平行
Line u1 = Line(u.s + (u.e - u.s).rotleft().trunc(r1), u.e + (u.e - u.s).rotleft().trunc(r1));
Line u2 = Line(u.s + (u.e - u.s).rotright().trunc(r1), u.e + (u.e - u.s).rotright().trunc(r1));
Line v1 = Line(v.s + (v.e - v.s).rotleft().trunc(r1), v.e + (v.e - v.s).rotleft().trunc(r1));
Line v2 = Line(v.s + (v.e - v.s).rotright().trunc(r1), v.e + (v.e - v.s).rotright().trunc(r1));
c1.r = c2.r = c3.r = c4.r = r1;
c1.p = u1.crosspoint(v1);
c2.p = u1.crosspoint(v2);
c3.p = u2.crosspoint(v1);
c4.p = u2.crosspoint(v2);
return 4;
}
//`同时与不相交圆cx,cy相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(circle cx, circle cy, double r1, circle &c1, circle &c2)
{
circle x(cx.p, r1 + cx.r), y(cy.p, r1 + cy.r);
int t = x.pointcrosscircle(y, c1.p, c2.p);
if (!t) return 0;
c1.r = c2.r = r1;
return t; //`返回圆的个数`
}
//`过一点作圆的切线(先判断点和圆的关系)`
//`测试:UVA12304`
int tangentline(Point q, Line &u, Line &v)
{
int x = relation(q);
if (x == 2) return 0;
if (x == 1)
{
u = Line(q, q + (q - p).rotleft());
v = u;
return 1;
}
double d = p.distance(q);
double l = r * r / d;
double h = sqrt(r * r - l * l);
u = Line(q, p + ((q - p).trunc(l) + (q - p).rotleft().trunc(h)));
v = Line(q, p + ((q - p).trunc(l) + (q - p).rotright().trunc(h)));
return 2; //`返回切线的个数`
}
int tangentpoint(Point q, Point &u, Point &v)
{
int x = relation(q);
if (x == 2) return 0;
if (x == 1)
{
u = q;
v = u;
return 1;
}
double d = p.distance(q);
double l = r * r / d;
double h = sqrt(r * r - l * l);
u = p + ((q - p).trunc(l) + (q - p).rotleft().trunc(h));
v = p + ((q - p).trunc(l) + (q - p).rotright().trunc(h));
return 2; //`返回切点的个数`
}
//`求两圆相交的面积`
double areacircle(circle v)
{
int rel = relationcircle(v);
if (rel >= 4) return 0.0;
if (rel <= 2) return min(area(), v.area());
double d = p.distance(v.p);
double hf = (r + v.r + d) / 2.0;
double ss = 2 * sqrt(hf * (hf - r) * (hf - v.r) * (hf - d));
double a1 = acos((r * r + d * d - v.r * v.r) / (2.0 * r * d));
a1 = a1 * r * r;
double a2 = acos((v.r * v.r + d * d - r * r) / (2.0 * v.r * d));
a2 = a2 * v.r * v.r;
return a1 + a2 - ss;
}
//`求圆和三角形pab的相交面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areatriangle(Point a, Point b)
{
if (sgn((p - a) ^ (p - b)) == 0) return 0.0;
Point q[5],p1, p2;
int len = 0;
q[len++] = a;
Line l(a, b);
if (pointcrossline(l, q[1], q[2]) == 2)
{
if (sgn((a - q[1]) * (b - q[1])) < 0) q[len++] = q[1];
if (sgn((a - q[2]) * (b - q[2])) < 0) q[len++] = q[2];
}
q[len++] = b;
if (len == 4 && sgn((q[0] - q[1]) * (q[2] - q[1])) > 0) swap(q[1], q[2]);
double res = 0;
for (int i = 0; i < len - 1; i++)
{
if (relation(q[i]) == 0 || relation(q[i + 1]) == 0)
{
double arg = p.rad(q[i], q[i + 1]);
res += r * r * arg / 2.0;
}
else res += fabs((q[i] - p) ^ (q[i + 1] - p)) / 2.0;
}
return res;
}
//`两圆公切线`
Point getpoint(double rad) { return Point(p.x + r * cos(rad), p.y + r * sin(rad)); }
int conmontangent(circle v, vector<Point> &p1, vector<Point> &p2)
{
bool flag = 0;
if (r < v.r) swap(*this, v), flag = 1;
double d = p.distance(v.p), rd = r - v.r, rs = r + v.r;
if (sgn(d - rd) < 0) return 0;
if (sgn(d) == 0) return -1;
double rad = Line(p, v.p).angle();
if (sgn(d - rd) == 0)
{
p1.push_back(getpoint(rad)), p2.push_back(getpoint(rad));
return 1; //`一条外公切线`
}
double rad1 = acos(rd / d);
p1.push_back(getpoint(rad + rad1)), p2.push_back(v.getpoint(rad + rad1));
p1.push_back(getpoint(rad - rad1)), p2.push_back(v.getpoint(rad - rad1));
if (sgn(d - rs) == 0)
{
p1.push_back(getpoint(rad)), p2.push_back(getpoint(rad));
if (flag) swap(p1, p2);
return 3; //`两条外公切线 一条内公切线`
}
else if (sgn(d - rs) > 0)
{
double rad2 = acos(rs / d);
p1.push_back(getpoint(rad + rad2)), p2.push_back(v.getpoint(rad + rad2 - pi));
p1.push_back(getpoint(rad - rad2)), p2.push_back(v.getpoint(rad - rad2 + pi));
if (flag) swap(p1, p2);
return 4; //`两条外公切线 两条内公切线`
}
else
{
if (flag) swap(p1, p2);
return 2; //`两条外公切线`
}
}
};
struct polygon
{
int n;
Point p[N];
Line l[N];
void input(int _n)
{
n = _n;
for (int i = 0; i < n; i++) p[i].input();
}
void add(Point q) { p[n++] = q; }
void getline()
{
for (int i = 0; i < n; i++)
l[i] = Line(p[i], p[(i + 1) % n]);
}
struct cmp
{
Point p;
cmp(const Point &p0) { p = p0; }
bool operator()(const Point &aa, const Point &bb)
{
Point a = aa, b = bb;
int d = sgn((a - p) ^ (b - p));
if (d == 0) return sgn(a.distance(p) - b.distance(p)) < 0;
return d > 0;
}
};
//`进行极角排序 mi为极点`
//`需要重载号好Point的 < 操作符(min函数要用) `
void norm(Point mi)
{
// Point mi = p[0];
// for(int i = 1;i < n;i++)mi = min(mi,p[i]);
sort(p, p + n, cmp(mi));
}
//`得到的凸包里面的点编号是0-n-1的`
//`注意如果有影响,要特判下所有点共点,或者共线的特殊情况`
//`测试 LightOJ1203 LightOJ1239`
void andrew(polygon &convex)
{
sort(p, p + n);
int &top = convex.n;
top = 0;
for (int i = 0; i < n; i++)
{
while (top >= 2 && sgn(cross(convex.p[top - 2], convex.p[top - 1], p[i])) <= 0) top--;
convex.p[top++] = p[i];
}
int temp = top;
for (int i = n - 2; i >= 0; i--)
{
while (top > temp && sgn(cross(convex.p[top - 2], convex.p[top - 1], p[i])) <= 0) top--;
convex.p[top++] = p[i];
}
top--;
}
//`判断是不是凸的`
bool isconvex()
{
bool s[5];
memset(s, false, sizeof(s));
for (int i = 0; i < n; i++)
{
int j = (i + 1) % n, k = (j + 1) % n;
s[sgn((p[j] - p[i]) ^ (p[k] - p[i])) + 1] = true;
if (s[0] && s[2]) return false;
}
return true;
}
//`判断点和任意多边形的关系`
int relationpoint(Point q)
{
for (int i = 0; i < n; i++)
if (p[i] == q) return 3; //` 3 点上`
for (int i = 0; i < n; i++)
if (l[i].pointonseg(q)) return 2; //` 2 边上`
int cnt = 0;
for (int i = 0; i < n; i++)
{
int j = (i + 1) % n;
int k = sgn((q - p[j]) ^ (p[i] - p[j]));
int u = sgn(p[i].y - q.y);
int v = sgn(p[j].y - q.y);
if (k > 0 && u < 0 && v >= 0) cnt++;
if (k < 0 && v < 0 && u >= 0) cnt--;
} //` 1 内部`
return cnt != 0; //` 0 外部`
}
//`直线u切割凸多边形左侧 注意直线方向`
//`测试:HDU3982`
void convexcut(Line u, polygon &po)
{
int &top = po.n; // 注意引用
top = 0;
for (int i = 0; i < n; i++)
{
int d1 = sgn((u.e - u.s) ^ (p[i] - u.s));
int d2 = sgn((u.e - u.s) ^ (p[(i + 1) % n] - u.s));
if (d1 >= 0) po.p[top++] = p[i];
if (d1 * d2 < 0) po.p[top++] = u.crosspoint(Line(p[i], p[(i + 1) % n]));
}
}
//`得到周长`
//`测试 LightOJ1239`
double getcircumference()
{
double sum = 0;
for (int i = 0; i < n; i++)
sum += p[i].distance(p[(i + 1) % n]);
return sum;
}
//`得到面积`
double getarea()
{
double sum = 0;
for (int i = 0; i < n; i++)
sum += (p[i] ^ p[(i + 1) % n]);
return fabs(sum) / 2;
}
//`得到方向`
bool getdir()
{
double sum = 0;
for (int i = 0; i < n; i++)
sum += (p[i] ^ p[(i + 1) % n]);
if (sgn(sum) > 0) return 1; //` 1 逆时针`
else return 0; //` 0 顺时针`
}
//`得到重心`
Point getbarycentre()
{
Point ret(0, 0);
double area = 0;
for (int i = 1; i < n - 1; i++)
{
double tmp = (p[i] - p[0]) ^ (p[i + 1] - p[0]);
if (sgn(tmp) == 0) continue;
area += tmp;
ret.x += (p[0].x + p[i].x + p[i + 1].x) / 3 * tmp;
ret.y += (p[0].y + p[i].y + p[i + 1].y) / 3 * tmp;
}
if (sgn(area)) ret = ret / area;
return ret;
}
//`多边形和圆交的面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areacircle(circle c)
{
double ans = 0;
for (int i = 0; i < n; i++)
{
int j = (i + 1) % n;
if (sgn((p[j] - c.p) ^ (p[i] - c.p)) >= 0) ans += c.areatriangle(p[i], p[j]);
else ans -= c.areatriangle(p[i], p[j]);
}
return fabs(ans);
}
//`多边形和圆关系`
int relationcircle(circle c)
{
int x = 2; //` 2 圆完全在多边形内`
if (relationpoint(c.p) != 1) return 0; //` 0 圆心不在内部`
for (int i = 0; i < n; i++)
{
if (c.relationseg(l[i]) == 2) return 0; //` 0 其它`
if (c.relationseg(l[i]) == 1) x = 1; //` 1 圆在多边形里面,碰到了多边形边界`
}
return x;
}
//`旋转卡壳求凸包直径(最远点对)`
double rorating_calipers1()
{
double res = 0;
for (int i = 0, j = 1; i < n; i++)
{
while (dsgn(cross(p[i], p[i + 1], p[j]), cross(p[i], p[i + 1], p[j + 1])) < 0) j = (j + 1) % n;
res = max(res, max(p[i].distance(p[j]), p[i + 1].distance(p[j])));
}
return res;
}
//`旋转卡壳求最小矩形覆盖`
double rorating_calipers2(polygon &pt)
{
double res = 1e20;
for (int i = 0, a = 1, b = 1, c; i < n; i++)
{
while (dsgn(cross(p[i], p[i + 1], p[a]), cross(p[i], p[i + 1], p[a + 1])) < 0) a = (a + 1) % n;
while (dsgn(dot(p[i], p[i + 1], p[b]), dot(p[i], p[i + 1], p[b + 1])) < 0) b = (b + 1) % n;
if (!i) c = a;
while (dsgn(dot(p[i + 1], p[i], p[c]), dot(p[i + 1], p[i], p[c + 1])) < 0) c = (c + 1) % n;
double d = p[i].distance(p[i + 1]);
double H = cross(p[i], p[i + 1], p[a]) / d;
double R = dot(p[i], p[i + 1], p[b]) / d;
double L = dot(p[i + 1], p[i], p[c]) / d;
if (dsgn(res, (L + R - d) * H) > 0)
{
res = (L + R - d) * H;
pt.p[0] = p[i + 1] + (p[i] - p[i + 1]) * (L / d);
pt.p[1] = p[i] + (p[i + 1] - p[i]) * (R / d);
pt.p[2] = pt.p[1] + (p[i + 1] - p[i]).rotleft() * (H / d);
pt.p[3] = pt.p[0] + (p[i + 1] - p[i]).rotleft() * (H / d);
}
}
return res;
}
//`分治法求最近点对`
Point a[N];
double divide(int l, int r)
{
if (l == r) return 2e9;
if (l + 1 == r) return p[l].distance(p[r]);
int mid = l + r >> 1;
double d = min(divide(l, mid), divide(mid + 1, r));
int k = 0;
for (int i = l; i <= r; i++)
if (fabs(p[mid].x - p[i].x) < d) a[k++] = p[i];
// sort(a,a+k,[&](Point a,Point b)->bool {return a.y<b.y;});
for (int i = 0; i < k; i++)
for (int j = i + 1; j < k && a[j].y - a[i].y < d; j++)
d = min(d, a[j].distance(a[i]));
return d;
}
//`旋转卡壳求最大三角形面积`
double rotating_calipers3()
{
double res = 0;
for (int i = 0; i < n; i++)
{
int k = i + 1;
for (int j = i + 1; j < n; j++)
{
while (dsgn(cross(p[i], p[j], p[k]), cross(p[i], p[j], p[k + 1])) < 0) k = (k + 1) % n;
res = max(res, cross(p[i], p[j], p[k]));
}
}
return res / 2;
}
};
//`半平面交求凸多边形面积交`
double half_plane1(Line l[], int n)
{
double res = 0;
sort(l, l + n);
Line q[N];
Point p[N];
int h = 0, t = 0, k = 0;
q[t++] = l[0];
for (int i = 1; i < n; i++)
{
if (sgn(l[i].angle() - l[i - 1].angle()) == 0) continue;
while (h < t - 1 && l[i].relation(q[t - 1].crosspoint(q[t - 2])) == 2) t--;
while (h < t - 1 && l[i].relation(q[h].crosspoint(q[h + 1])) == 2) h++;
q[t++] = l[i];
}
while (h < t - 1 && l[h].relation(q[t - 1].crosspoint(q[t - 2])) == 2) t--;
q[t++] = q[h];
for (int i = h; i < t - 1; i++) p[k++] = q[i].crosspoint(q[i + 1]);
for (int i = 1; i < k - 1; i++) res += (p[i] - p[0]) ^ (p[i + 1] - p[0]);
return res / 2;
}
//`水平可见直线 从上向下看输出能看见哪些直线`
void half_plane2(Line l[], int n)
{
sort(l, l + n);
Line q[N];
int h = 0, t = 0, k = 0;
q[t++] = l[0];
for (int i = 1; i < n; i++)
{
if (sgn(l[i].angle() - l[i - 1].angle()) == 0) continue;
while (h < t - 1 && l[i].relation(q[t - 1].crosspoint(q[t - 2])) == 2) t--;
// while(h<t-1&&l[i].relation(q[h].crosspoint(q[h+1]))==2) h++;
q[t++] = l[i];
}
int ans[N];
for (int i = h; i < t; i++)
// for(auto j:q[i].id) ans[k++]=j;
sort(ans, ans + k);
cout << k << endl;
for (int i = 0; i < k; i++) cout << ans[i] << " ";
}
//`多边形内核`
bool half_plane3(Line l[], int n)
{
sort(l, l + n);
Line q[N];
int h = 0, t = 0;
q[t++] = l[0];
for (int i = 1; i < n; i++)
{
if (sgn(l[i].angle() - l[i - 1].angle()) == 0) continue;
while (h < t - 1 && l[i].relation(q[t - 1].crosspoint(q[t - 2])) == 2) t--;
while (h < t - 1 && l[i].relation(q[h].crosspoint(q[h + 1])) == 2) h++;
q[t++] = l[i];
}
while (h < t - 1 && l[h].relation(q[t - 1].crosspoint(q[t - 2])) == 2) t--;
return t - h >= 3;
}
//`最小圆覆盖`
circle increment(Point p[], int n)
{
random_shuffle(p, p + n);
circle ans;
ans.p = p[0], ans.r = 0;
for (int i = 1; i < n; i++)
if (ans.r < ans.p.distance(p[i]))
{
ans.p = p[i], ans.r = 0;
for (int j = 0; j < i; j++)
if (ans.r < ans.p.distance(p[j]))
{
ans.p = (p[i] + p[j]) / 2, ans.r = p[i].distance(p[j]) / 2;
for (int k = 0; k < j; k++)
if (ans.r < ans.p.distance(p[k]))
{
Point p1 = (p[i] + p[j]) / 2;
Point v1 = (p[i] - p[j]).rotright();
Point p2 = (p[i] + p[k]) / 2;
Point v2 = (p[i] - p[k]).rotright();
ans.p = Line(p1, p1 + v1).crosspoint(Line(p2, p2 + v2));
ans.r = ans.p.distance(p[i]);
}
}
}
return ans;
}
//`自适应辛普森积分`
inline double f(double x)
{ // 积分函数
return x;
}
double simpson(double l, double r)
{ // 辛普森公式
double mid = (l + r) / 2;
return (r - l) * (f(l) + f(r) + 4 * f(mid)) / 6;
}
double asr(double l, double r, double ans)
{ // 自适应
double mid = (l + r) / 2;
double a = simpson(l, mid), b = simpson(mid, r);
if (sgn(a + b - ans) == 0) return ans;
return asr(l, mid, a) + asr(mid, r, b);
}
struct Point3
{
double x, y, z;
//Point3(){}
Point3(double _x=0, double _y=0, double _z=0) { x = _x;y = _y;z = _z; }
void input() { cin>>x>>y>>z; }
bool operator==(const Point3 &b) const {return sgn(x-b.x)==0&&sgn(y-b.y)==0&&sgn(z-b.z)==0;}
bool operator<(const Point3 &b) const {return sgn(x-b.x)==0?(sgn(y-b.y)==0?sgn(z-b.z)<0:y<b.y):x<b.x;}
double len() { return sqrt(x * x + y * y + z * z); }
double len2() { return x * x + y * y + z * z; }
double distance(const Point3 &b) const {return sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)+(z-b.z)*(z-b.z));}
Point3 operator-(const Point3 &b) const { return Point3(x - b.x, y - b.y, z - b.z); }
Point3 operator+(const Point3 &b) const { return Point3(x + b.x, y + b.y, z + b.z); }
Point3 operator*(const double &k) const { return Point3(x * k, y * k, z * k); }
Point3 operator/(const double &k) const { return Point3(x / k, y / k, z / k); }
// 点乘
double operator*(const Point3 &b) const { return x * b.x + y * b.y + z * b.z; }
// 叉乘
Point3 operator^(const Point3 &b) const {return Point3(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}
double rad(Point3 a, Point3 b)
{
Point3 p = (*this);
return acos(((a - p) * (b - p)) / (a.distance(p) * b.distance(p)));
}
//`化为长度为r的向量`
Point3 trunc(double r)
{
double l = len();
if (!sgn(l)) return *this;
r /= l;
return Point3(x * r, y * r, z * r);
}
};
struct Line3
{
Point3 s, e;
Line3() {}
Line3(Point3 _s, Point3 _e) { s = _s;e = _e; }
bool operator==(const Line3 v) { return (s == v.s) && (e == v.e); }
void input() { s.input();e.input(); }
double length() { return s.distance(e); }
// 点到直线距离
double dispointtoline(Point3 p) { return ((e - s) ^ (p - s)).len() / s.distance(e); }
// 点到线段距离
double dispointtoseg(Point3 p)
{
if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0) return min(p.distance(s), e.distance(p));
return dispointtoline(p);
}
//`返回点p在直线上的投影`
Point3 lineprog(Point3 p) { return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).len2())); }
//`p绕此向量逆时针arg角度`
Point3 rotate(Point3 p, double ang)
{
if (sgn(((s - p) ^ (e - p)).len()) == 0) return p;
Point3 f1 = (e - s) ^ (p - s);
Point3 f2 = (e - s) ^ (f1);
double len = ((s - p) ^ (e - p)).len() / s.distance(e);
f1 = f1.trunc(len);
f2 = f2.trunc(len);
Point3 h = p + f2;
Point3 pp = h + f1;
return h + ((p - h) * cos(ang)) + ((pp - h) * sin(ang));
}
//`点在直线上`
bool pointonseg(Point3 p) { return sgn(((s - p) ^ (e - p)).len()) == 0 && sgn((s - p) * (e - p)) == 0; }
};
struct Plane
{
Point3 a, b, c, o; //`平面上的三个点,以及法向量`
Plane() {}
Plane(Point3 _a, Point3 _b, Point3 _c)
{
a = _a;b = _b;c = _c;
o = pvec();
}
Point3 pvec() { return (b - a) ^ (c - a); }
//`ax+by+cz+d = 0`
Plane(double _a, double _b, double _c, double _d)
{
o = Point3(_a, _b, _c);
if (sgn(_a) != 0) a = Point3((-_d - _c - _b) / _a, 1, 1);
else if (sgn(_b) != 0) a = Point3(1, (-_d - _c - _a) / _b, 1);
else if (sgn(_c) != 0) a = Point3(1, 1, (-_d - _a - _b) / _c);
}
//`点在平面上的判断`
bool pointonplane(Point3 p) { return sgn((p - a) * o) == 0; }
//`两平面夹角`
double angleplane(Plane f) { return acos(o * f.o) / (o.len() * f.o.len()); }
//`平面和直线的交点,返回值是交点个数`
int crossline(Line3 u, Point3 &p)
{
double x = o * (u.e - a);
double y = o * (u.s - a);
double d = x - y;
if (sgn(d) == 0) return 0;
p = ((u.s * x) - (u.e * y)) / d;
return 1;
}
//`点到平面最近点(也就是投影)`
Point3 pointtoplane(Point3 p)
{
Line3 u = Line3(p, p + o);
crossline(u, p);
return p;
}
//`平面和平面的交线`
int crossplane(Plane f, Line3 &u)
{
Point3 oo = o ^ f.o;
Point3 v = o ^ oo;
double d = fabs(f.o * v);
if (sgn(d) == 0) return 0;
Point3 q = a + (v * (f.o * (f.a - a)) / d);
u = Line3(q, q + oo);
return 1;
}
};
struct CH3D
{
struct face
{
int a, b, c; // 表示凸包一个面上的三个点的编号
bool ok; // 表示该面是否属于最终的凸包上的面
};
int n;// 初始顶点数
Point3 P[N];
int num;// 凸包表面的三角形数
face F[8 * N];// 凸包表面的三角形
int g[N][N];
void input(int _n)
{
n = _n;
for (int i = 0; i < n; i++) P[i].input();
}
// 叉乘
Point3 cross(const Point3 &a, const Point3 &b, const Point3 &c) { return (b - a) ^ (c - a); }
//`三角形面积*2`
double area(Point3 a, Point3 b, Point3 c) { return ((b - a) ^ (c - a)).len(); }
//`四面体有向面积*6`
double volume(Point3 a, Point3 b, Point3 c, Point3 d) { return ((b - a) ^ (c - a)) * (d - a); }
//`正:点在面同向`
double dblcmp(Point3 &p, face &f)
{
Point3 p1 = P[f.b] - P[f.a];
Point3 p2 = P[f.c] - P[f.a];
Point3 p3 = p - P[f.a];
return (p1 ^ p2) * p3;
}
void deal(int p, int a, int b)
{
int f = g[a][b];
face add;
if (F[f].ok)
{
if (dblcmp(P[p], F[f]) > eps) dfs(p, f);
else
{
add.a = b;
add.b = a;
add.c = p;
add.ok = true;
g[p][b] = g[a][p] = g[b][a] = num;
F[num++] = add;
}
}
}
// 递归搜索所有应该从凸包内删除的面
void dfs(int p, int now)
{
F[now].ok = false;
deal(p, F[now].b, F[now].a);
deal(p, F[now].c, F[now].b);
deal(p, F[now].a, F[now].c);
}
bool same(int s, int t)
{
Point3 &a = P[F[s].a];
Point3 &b = P[F[s].b];
Point3 &c = P[F[s].c];
return fabs(volume(a, b, c, P[F[t].a])) < eps &&
fabs(volume(a, b, c, P[F[t].b])) < eps &&
fabs(volume(a, b, c, P[F[t].c])) < eps;
}
// 构建三维凸包
void create()
{
num = 0;
face add;
//***********************************
// 此段是为了保证前四个点不共面
bool flag = true;
for (int i = 1; i < n; i++)
{
if (!(P[0] == P[i]))
{
swap(P[1], P[i]);
flag = false;
break;
}
}
if (flag) return;
flag = true;
for (int i = 2; i < n; i++)
{
if (((P[1] - P[0]) ^ (P[i] - P[0])).len() > eps)
{
swap(P[2], P[i]);
flag = false;
break;
}
}
if (flag) return;
flag = true;
for (int i = 3; i < n; i++)
{
if (fabs(((P[1] - P[0]) ^ (P[2] - P[0])) * (P[i] - P[0])) > eps)
{
swap(P[3], P[i]);
flag = false;
break;
}
}
if (flag) return;
//**********************************
for (int i = 0; i < 4; i++)
{
add.a = (i + 1) % 4;
add.b = (i + 2) % 4;
add.c = (i + 3) % 4;
add.ok = true;
if (dblcmp(P[i], add) > 0) swap(add.b, add.c);
g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] = num;
F[num++] = add;
}
for (int i = 4; i < n; i++)
for (int j = 0; j < num; j++)
if (F[j].ok && dblcmp(P[i], F[j]) > eps)
{
dfs(i, j);
break;
}
int tmp = num;
num = 0;
for (int i = 0; i < tmp; i++)
if (F[i].ok) F[num++] = F[i];
}
// 表面积
//`测试:HDU3528`
double area()
{
double res = 0;
if (n == 3)
{
Point3 p = cross(P[0], P[1], P[2]);
return p.len() / 2;
}
for (int i = 0; i < num; i++)
res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
return res / 2.0;
}
double volume()
{
double res = 0;
Point3 tmp = Point3(0, 0, 0);
for (int i = 0; i < num; i++)
res += volume(tmp, P[F[i].a], P[F[i].b], P[F[i].c]);
return fabs(res / 6);
}
// 表面三角形个数
int triangle() { return num; }
// 表面多边形个数
//`测试:HDU3662`
int polygon()
{
int res = 0;
for (int i = 0; i < num; i++)
{
bool flag = true;
for (int j = 0; j < i; j++)
if (same(i, j))
{
flag = 0;
break;
}
res += flag;
}
return res;
}
// 重心
//`测试:HDU4273`
Point3 barycenter()
{
Point3 ans = Point3(0, 0, 0);
Point3 o = Point3(0, 0, 0);
double all = 0;
for (int i = 0; i < num; i++)
{
double vol = volume(o, P[F[i].a], P[F[i].b], P[F[i].c]);
ans = ans + (((o + P[F[i].a] + P[F[i].b] + P[F[i].c]) / 4.0) * vol);
all += vol;
}
ans = ans / all;
return ans;
}
// 点到面的距离
//`测试:HDU4273`
double ptoface(Point3 p, int i)
{
double tmp1 = fabs(volume(P[F[i].a], P[F[i].b], P[F[i].c], p));
double tmp2 = ((P[F[i].b] - P[F[i].a]) ^ (P[F[i].c] - P[F[i].a])).len();
return tmp1 / tmp2;
}
};
template<typename T>
inline T read()
{
T x = 0;int f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
return x * f;
}
void solve()
{
int n;cin>>n;
if(n==3){
cout<<0<<endl;
return;
}
circle c;c.input();
Point p[N];
for(int i=0;i<n;i++) p[i].input(),p[i+n]=p[i];
int i=0,j=1,k=n-1;
double res1=0,res2=0,t1=0,t2=0;
while(j+1<n&&c.relationseg(Line(p[i],p[j+1]))!=2) t1+=cross(p[i],p[j],p[j+1]),++j;
while(k-1>=0&&c.relationseg(Line(p[i],p[k-1]))!=2) t2+=cross(p[i],p[k-1],p[k]),--k;
res1=max(res1,t1),res2=max(res2,t2);
//cout<<"0:"<<j<<" "<<k<<" "<<t1<<" "<<t2<<endl;
for(i=1;i<n;i++){
t1-=cross(p[i-1],p[i],p[j]),t2+=cross(p[i],p[k],p[i-1]);
while(j+1<2*n&&c.relationseg(Line(p[i],p[j+1]))!=2){
if(cross(p[i],c.p,p[j+1])>0) break;
t1+=cross(p[i],p[j],p[j+1]),++j;
}
while(k+1<2*n&&c.relationseg(Line(p[i],p[k]))==2){
if(cross(p[i],p[k+1],c.p)>0) break;
t2-=cross(p[i],p[k],p[k+1]),++k;
}
//cout<<i<<":"<<j<<" "<<k<<" "<<t1<<" "<<t2<<endl;
res1=max(res1,t1),res2=max(res2,t2);
}
cout<<max(res1,res2)<<endl;
}
int main()
{
//ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1; cin >> t;
while (t--) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3904kb
input:
3 5 1 1 1 0 0 1 0 5 0 3 3 0 5 6 2 4 1 2 0 4 0 6 3 4 6 2 6 0 3 4 3 3 1 3 0 6 3 3 6 0 3
output:
5 24 0
result:
ok 3 number(s): "5 24 0"
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 3984kb
input:
1 6 0 0 499999993 197878055 -535013568 696616963 -535013568 696616963 40162440 696616963 499999993 -499999993 499999993 -499999993 -535013568
output:
2.86863e+17
result:
wrong output format Expected integer, but "2.86863e+17" found