QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#762871#9631. Median Replacementsuperguymj#WA 0ms3876kbC++2014.6kb2024-11-19 17:01:452024-11-19 17:01:52

Judging History

你现在查看的是最新测评结果

  • [2024-11-19 17:01:52]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3876kb
  • [2024-11-19 17:01:45]
  • 提交

answer

#include <bits/stdc++.h>
#define rep(i,x,y) for (int i = x; i <= y; i++)
#define repd(i,x,y) for (int i = x; i >= y; i--)
#define mid ((l + r) >> 1)
#define lch (rt << 1)
#define rch (rt << 1 | 1)

using namespace std;

using i64 = long long;
template<class T>
T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
 
template<int P>
struct MInt {
    int x;
    MInt() : x{} {}
    MInt(i64 x) : x{norm(x % getMod())} {}
     
    static int Mod;
    static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    static void setMod(int Mod_) {
        Mod = Mod_;
    }
    int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    int val() const {
        return x;
    }
    explicit operator int() const {
        return x;
    }
    MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
int MInt<0>::Mod = 1;
 
template<int V, int P>
MInt<P> CInv = MInt<P>(V).inv();
 
constexpr int P = 1000000007;
using Z = MInt<P>;
 
std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};
 
template<int P>
MInt<P> findPrimitiveRoot() {
    MInt<P> i = 2;
    int k = __builtin_ctz(P - 1);
    while (true) {
        if (power(i, (P - 1) / 2) != 1) {
            break;
        }
        i += 1;
    }
    return power(i, (P - 1) >> k);
}
 
template<int P>
MInt<P> primitiveRoot = findPrimitiveRoot<P>();
 
template<>
MInt<998244353> primitiveRoot<998244353> {31};
 
template<int P>
void dft(std::vector<MInt<P>> &a) {
    int n = a.size();
     
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
     
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots<P>.size() < n) {
        int k = __builtin_ctz(roots<P>.size());
        roots<P>.resize(n);
        while ((1 << k) < n) {
            auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots<P>[2 * i] = roots<P>[i];
                roots<P>[2 * i + 1] = roots<P>[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                MInt<P> u = a[i + j];
                MInt<P> v = a[i + j + k] * roots<P>[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}
 
template<int P>
void idft(std::vector<MInt<P>> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    MInt<P> inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}
 
template<int P = 1000000007>
struct Poly : public std::vector<MInt<P>> {
    using Value = MInt<P>;
     
    Poly() : std::vector<Value>() {}
    explicit Poly(int n) : std::vector<Value>(n) {}
     
    explicit Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
    Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
     
    template<class InputIt, class = std::_RequireInputIter<InputIt>>
    explicit Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
     
    template<class F>
    explicit Poly(int n, F f) : std::vector<Value>(n) {
        for (int i = 0; i < n; i++) {
            (*this)[i] = f(i);
        }
    }
     
    Poly shift(int k) const {
        if (k >= 0) {
            auto b = *this;
            b.insert(b.begin(), k, 0);
            return b;
        } else if (this->size() <= -k) {
            return Poly();
        } else {
            return Poly(this->begin() + (-k), this->end());
        }
    }
    Poly reverse() const {
        Poly f = *this;
        std::reverse(f.begin(), f.end());
        return f;
    }
    Poly trunc(int k) const {
        Poly f = *this;
        f.resize(k);
        return f;
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] += b[i];
        }
        return res;
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] -= b[i];
        }
        return res;
    }
    friend Poly operator-(const Poly &a) {
        std::vector<Value> res(a.size());
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = -a[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        if (a.size() < b.size()) {
            std::swap(a, b);
        }
        int n = 1, tot = a.size() + b.size() - 1;
        while (n < tot) {
            n *= 2;
        }
        if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
            Poly c(a.size() + b.size() - 1);
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    c[i + j] += a[i] * b[j];
                }
            }
            return c;
        }
        a.resize(n);
        b.resize(n);
        dft(a);
        dft(b);
        for (int i = 0; i < n; ++i) {
            a[i] *= b[i];
        }
        idft(a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Value a, Poly b) {
        for (int i = 0; i < int(b.size()); i++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    friend Poly operator/(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] /= b;
        }
        return a;
    }
    friend Poly operator%(Poly a, Poly b) {
        assert(b.size() > 0);
        if (a.size() < b.size()) {
            return a;
        }
        int n = a.size();
        int m = b.size();
        return (a - (a.reverse().trunc(n - m + 1) * b.reverse().inv(n - m + 1)).trunc(n - m + 1).reverse() * b).trunc(m - 1);
    }
    Poly &operator+=(Poly b) {
        if (this -> size() < b.size()) {
            this -> resize(b.size());
        }
        for (int i = 0; i < b.size(); i++) {
            (*this)[i] += b[i];
        }
        return *this;
    }
    Poly &operator-=(Poly b) {
        if (this -> size() < b.size()) {
            this -> resize(b.size());
        }
        for (int i = 0; i < b.size(); i++) {
            (*this)[i] -= b[i];
        }
        return *this;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly &operator*=(Value b) {
        return (*this) = (*this) * b;
    }
    Poly &operator/=(Value b) {
        return (*this) = (*this) / b;
    }
    Poly deriv() const {
        if (this->empty()) {
            return Poly();
        }
        Poly res(this->size() - 1);
        for (int i = 0; i < this->size() - 1; ++i) {
            res[i] = (i + 1) * (*this)[i + 1];
        }
        return res;
    }
    Poly integr() const {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size(); ++i) {
            res[i + 1] = (*this)[i] / (i + 1);
        }
        return res;
    }
    Poly inv(int m) const {
        Poly x{(*this)[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
        }
        return x.trunc(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().trunc(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
        }
        return x.trunc(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < this->size() && (*this)[i] == 0) {
            i++;
        }
        if (i == this->size() || 1LL * i * k >= m) {
            return Poly(m);
        }
        Value v = (*this)[i];
        auto f = shift(-i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
        }
        return x.trunc(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        std::reverse(b.begin(), b.end());
        return ((*this) * b).shift(-(n - 1));
    }
};

using M = vector<vector<Z>>;

M inv(M a) {
    int n = a.size();
    M b(n, vector<Z>(n));
    rep(i,0,n-1) {
        b[i][i] = 1;
    }
    rep(i,0,n-1) {
        int p = i;
        rep(j,i,n-1) {
            if (a[j][i] != 0) {
                p = j;
                break;
            }
        }
        swap(a[i], a[p]);
        swap(b[i], b[p]);
        Z I = 1 / a[i][i];
        rep(j,0,n-1) {
            a[i][j] *= I;
            b[i][j] *= I;
        }

        rep(j,0,n-1) {
            if (i == j) {
                continue;
            }
            Z t = a[j][i];
            rep(k,0,n-1) {
                a[j][k] -= a[i][k] * t;
                b[j][k] -= b[i][k] * t;
            }
        }
    }
    return b;
}

vector<Z> operator*(M a, vector<Z> b) {
    int n = a.size();
    vector<Z> c(n);
    rep(i,0,n-1) {
        rep(j,0,n-1) {
            c[i] += a[i][j] * b[j];
        }
    }
    return c;
}

void solve() {
    int n;
    cin >> n;

    vector<int> l(n), r(n);
    rep(i,0,n-1) {
        cin >> l[i];
    }
    rep(i,0,n-1) {
        cin >> r[i];
        r[i]++;
    }

    vector<int> p{0};
    rep(i,0,n-1) {
        p.push_back(l[i]);
        p.push_back(r[i]);
    }
    sort(p.begin(), p.end());
    p.resize(unique(p.begin(), p.end()) - p.begin());



    const int N = n + 1;
    M a(N, vector<Z>(N));
    rep(i,0,N-1) {
        a[i][0] = 1;
        rep(j,1,N-1) {
            a[i][j] = a[i][j - 1] * i;
        }
    }
    a = inv(a);

    M c(N, vector<Z>(N));
    rep(i,0,N-1) {
        vector<Z> b(N);
        rep(j,0,N-1) {
            b[j] = power(Z(j), i);
            if (j) {
                b[j] += b[j - 1];
            }
        }
        c[i] = a * b;
    }

    auto calc = [&](int k, int l, int r) -> Z {
        Z res{0};
        Z x = r - 1;
        Z pw = 1;
        rep(i,0,N-1) {
            res += c[k][i] * pw;
            pw *= x;
        }
        x = l - 1;
        pw = 1;
        rep(i,0,N-1) {
            res -= c[k][i] * pw;
            pw *= x;
        }
        return res;
    };

    int m = p.size();
    Z ans{0};
    rep(i,0,m-2) {
        vector<Poly<P>> f(16);

        auto get = [&](int i, int L, int R) {
            if (r[i] <= L) {
                return make_pair(Poly({r[i] - l[i]}), Poly({0}));
            }
            if (R <= l[i]) {
                return make_pair(Poly({0}), Poly({r[i] - l[i]}));
            }
            return make_pair(Poly({1 - l[i], 1}), Poly({r[i] - 1, -1}));
        };

        rep(s,0,7) {
            int t = s | (__builtin_popcount(s) > 1) << 3;
            f[t] = {1};
            rep(j,0,2) {
                auto [f0, f1] = get(j, p[i], p[i + 1]);
                if (s >> j & 1) {
                    f[t] *= f1;
                } else {
                    f[t] *= f0;
                }
            }
        }

        rep(j,3,n-1) {
            vector<Poly<P>> nf(16);
            auto [f0, f1] = get(j, p[i], p[i + 1]);
            rep(k,0,15) {
                rep(t,0,1) {
                    int s = (k & 7) >> 1 | (t << 2);
                    s |= (__builtin_popcount(s) > 1) << 3;
                    if (t) {
                        nf[s] += f[k] * f1;
                    } else {
                        nf[s] += f[k] * f0;
                    }
                }
            }
            swap(f, nf);
        }

        Poly F;
        rep(s,0,7) {
            F += f[s | 8];
        }
        for (int j = 0; j < F.size(); j++) {
            ans += F[j] * calc(j, p[i], p[i + 1]);
        }
    }

    cout << ans << '\n';
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);

    int T;
    cin >> T;

    while (T--) {
        solve();
    }

    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 3876kb

input:

10
5
5 1 4 3 2
14 2 5 3 2
5
4 5 1 2 3
13 7 1 2 3
5
5 2 5 3 1
10 2 12 3 2
5
5 5 3 1 5
57 5 3 1 5
5
2 2 3 3 5
4 5 4 4 5
5
4 5 3 5 3
13 7 3 5 3
5
5 1 4 2 3
14 3 4 2 3
5
1 2 5 4 5
2 8 5 7 5
5
1 1 3 5 1
8 2 3 8 1
5
4 4 4 2 3
5 10 5 2 3

output:

120
60
288
159
180
90
90
280
192
84

result:

wrong answer 1st lines differ - expected: '180', found: '120'