QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#755182 | #9553. The Hermit | ucup-team296# | AC ✓ | 19ms | 3220kb | Rust | 44.7kb | 2024-11-16 16:39:03 | 2024-11-18 19:48:35 |
Judging History
answer
// https://contest.ucup.ac/contest/1843/problem/9553
pub mod solution {
//{"name":"F. The Hermit","group":"Universal Cup - The 3rd Universal Cup. Stage 17: Jinan","url":"https://contest.ucup.ac/contest/1843/problem/9553","interactive":false,"timeLimit":1000,"tests":[{"input":"4 3\n","output":"7\n"},{"input":"11 4\n","output":"1187\n"},{"input":"100000 99999\n","output":"17356471\n"}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"FTheHermit"}}}
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::memo::memoization::Memoization2;
use crate::algo_lib::misc::recursive_function::Callable2;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use crate::algo_lib::numbers::mod_int::ModIntF;
use crate::algo_lib::numbers::mod_utils::Combinations;
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
let m = input.read_size();
let n = input.read_size();
type Mod = ModIntF;
let c = Combinations::<Mod>::new(m + 1);
let mut mem = Memoization2::new(|mem, n: usize, len: usize| -> (Mod, Mod) {
if n <= len {
(Mod::zero(), Mod::zero())
} else if len == 0 {
(Mod::zero(), Mod::one())
} else {
let mut qty = c.c(n - 1, len);
let mut sum = Mod::zero();
for i in 2..=n {
let (call_sum, call_qty) = mem.call(n / i, len - 1);
qty -= call_qty;
sum += call_sum;
}
sum += qty * Mod::from_index(len);
(sum, c.c(n - 1, len))
}
});
out.print_line(mem.call(m, n).0 + mem.call(m, n - 1).0);
}
pub static TEST_TYPE: TestType = TestType::Single;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = ();
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => input.is_empty(),
TaskType::Interactive => true,
}
}
}
pub mod algo_lib {
#![allow(clippy::too_many_arguments)]
#![allow(clippy::type_complexity)]
#![allow(clippy::missing_safety_doc)]
#![allow(clippy::legacy_numeric_constants)]
pub mod collections {
pub mod fx_hash_map {
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell::Cell;
use std::convert::TryInto;
use std::time::SystemTime;
use std::collections::HashMap;
use std::collections::HashSet;
use std::hash::BuildHasherDefault;
use std::hash::Hasher;
use std::mem::size_of;
use std::ops::BitXor;
pub type FxHashMap<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher>>;
pub type FxHashSet<V> = HashSet<V, BuildHasherDefault<FxHasher>>;
#[derive(Default)]
pub struct FxHasher {
hash: usize,
}
thread_local! {
static K: Cell<usize> = Cell::new(
((SystemTime::UNIX_EPOCH.elapsed().unwrap().as_nanos().wrapping_mul(2) + 1) & 0xFFFFFFFFFFFFFFFF) as usize
);
}
impl FxHasher {
#[inline]
fn add_to_hash(&mut self, i: usize) {
self.hash = self
.hash
.rotate_left(5)
.bitxor(i)
.wrapping_mul(K.with(|k| k.get()));
}
}
impl Hasher for FxHasher {
#[inline]
fn write(&mut self, mut bytes: &[u8]) {
let read_usize = |bytes: &[u8]| u64::from_ne_bytes(bytes[..8].try_into().unwrap());
let mut hash = FxHasher { hash: self.hash };
while bytes.len() >= size_of::<usize>() {
hash.add_to_hash(read_usize(bytes) as usize);
bytes = &bytes[size_of::<usize>()..];
}
if (size_of::<usize>() > 4) && (bytes.len() >= 4) {
hash.add_to_hash(u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as usize);
bytes = &bytes[4..];
}
if (size_of::<usize>() > 2) && bytes.len() >= 2 {
hash.add_to_hash(u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as usize);
bytes = &bytes[2..];
}
if (size_of::<usize>() > 1) && !bytes.is_empty() {
hash.add_to_hash(bytes[0] as usize);
}
self.hash = hash.hash;
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.add_to_hash(i);
}
#[inline]
fn finish(&self) -> u64 {
self.hash as u64
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
use std::mem::MaybeUninit;
pub struct Input<'s> {
input: &'s mut (dyn Read + Send),
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut (dyn Read + Send)) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut (dyn Read + Send), buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !b.is_ascii_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if c.is_ascii_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> u8 {
self.skip_whitespace();
self.get().unwrap()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for u8 {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
impl<T: Readable, const SIZE: usize> Readable for [T; SIZE] {
fn read(input: &mut Input) -> Self {
unsafe {
let mut res = MaybeUninit::<[T; SIZE]>::uninit();
for i in 0..SIZE {
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add(i).write(input.read::<T>());
}
res.assume_init()
}
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
precision: Option<usize>,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
precision: None,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
precision: None,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
self.print_per_line_iter(arg.iter());
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
self.print_iter(iter);
self.put(b'\n');
}
pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
for e in iter {
e.write(self);
self.put(b'\n');
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
pub fn set_precision(&mut self, precision: Option<usize>) {
self.precision = precision;
}
pub fn get_precision(&self) -> Option<usize> {
self.precision
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl Writable for u8 {
fn write(&self, output: &mut Output) {
output.put(*self);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod memo {
pub mod memoization {
use crate::algo_lib::collections::fx_hash_map::FxHashMap;
use crate::algo_lib::misc::recursive_function::Callable;
use crate::algo_lib::misc::recursive_function::Callable2;
use crate::algo_lib::misc::recursive_function::Callable3;
use crate::algo_lib::misc::recursive_function::Callable4;
use crate::algo_lib::misc::recursive_function::Callable5;
use crate::algo_lib::misc::recursive_function::Callable6;
use crate::algo_lib::misc::recursive_function::Callable7;
use crate::algo_lib::misc::recursive_function::Callable8;
use crate::algo_lib::misc::recursive_function::Callable9;
use std::hash::Hash;
macro_rules! memoization {
($name: ident, $trait: ident, ($($type: ident $arg: ident,)*)) => {
pub struct $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
f: std::cell::UnsafeCell<F>,
res: FxHashMap<($($type, )*), Output>,
}
impl<F, $($type, )*Output: Clone> $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
pub fn new(f: F) -> Self {
Self {
f: std::cell::UnsafeCell::new(f),
res: FxHashMap::default(),
}
}
}
impl<F, $($type : Hash + Eq + Clone, )*Output: Clone> $trait<$($type, )*Output> for $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
fn call(&mut self, $($arg: $type, )*) -> Output {
match self.res.get(&($($arg.clone(), )*)).cloned() {
None => {
let res = unsafe { (*self.f.get())(self, $($arg.clone(), )*) };
self.res.insert(($($arg, )*), res.clone());
res
}
Some(res) => res,
}
}
}
}
}
memoization!(Memoization, Callable, (Arg arg,));
memoization!(Memoization2, Callable2, (Arg1 arg1, Arg2 arg2,));
memoization!(Memoization3, Callable3, (Arg1 arg1, Arg2 arg2, Arg3 arg3,));
memoization!(Memoization4, Callable4, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4,));
memoization!(Memoization5, Callable5, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5,));
memoization!(Memoization6, Callable6, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6,));
memoization!(Memoization7, Callable7, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7,));
memoization!(Memoization8, Callable8, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8,));
memoization!(Memoization9, Callable9, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8, Arg9 arg9,));
}
}
pub mod recursive_function {
use std::marker::PhantomData;
macro_rules! recursive_function {
($name: ident, $trait: ident, ($($type: ident $arg: ident,)*)) => {
pub trait $trait<$($type, )*Output> {
fn call(&mut self, $($arg: $type,)*) -> Output;
}
pub struct $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
f: std::cell::UnsafeCell<F>,
$($arg: PhantomData<$type>,
)*
phantom_output: PhantomData<Output>,
}
impl<F, $($type, )*Output> $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
pub fn new(f: F) -> Self {
Self {
f: std::cell::UnsafeCell::new(f),
$($arg: Default::default(),
)*
phantom_output: Default::default(),
}
}
}
impl<F, $($type, )*Output> $trait<$($type, )*Output> for $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
fn call(&mut self, $($arg: $type,)*) -> Output {
unsafe { (*self.f.get())(self, $($arg, )*) }
}
}
}
}
recursive_function!(RecursiveFunction0, Callable0, ());
recursive_function!(RecursiveFunction, Callable, (Arg arg,));
recursive_function!(RecursiveFunction2, Callable2, (Arg1 arg1, Arg2 arg2,));
recursive_function!(RecursiveFunction3, Callable3, (Arg1 arg1, Arg2 arg2, Arg3 arg3,));
recursive_function!(RecursiveFunction4, Callable4, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4,));
recursive_function!(RecursiveFunction5, Callable5, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5,));
recursive_function!(RecursiveFunction6, Callable6, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6,));
recursive_function!(RecursiveFunction7, Callable7, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7,));
recursive_function!(RecursiveFunction8, Callable8, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8,));
recursive_function!(RecursiveFunction9, Callable9, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8, Arg9 arg9,));
}
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
pub mod value {
use std::hash::Hash;
pub trait Value<T>: Copy + Eq + Hash {
fn val() -> T;
}
pub trait ConstValue<T>: Value<T> {
const VAL: T;
}
impl<T, V: ConstValue<T>> Value<T> for V {
fn val() -> T {
Self::VAL
}
}
#[macro_export]
macro_rules! value {
($name: ident: $t: ty = $val: expr) => {
#[derive(Copy, Clone, Eq, PartialEq, Hash, Ord, PartialOrd, Default)]
pub struct $name {}
impl $crate::algo_lib::misc::value::ConstValue<$t> for $name {
const VAL: $t = $val;
}
};
}
pub trait DynamicValue<T>: Value<T> {
//noinspection RsSelfConvention
fn set_val(t: T);
}
#[macro_export]
macro_rules! dynamic_value {
($name: ident: $t: ty, $val: ident) => {
static mut $val: Option<$t> = None;
#[derive(Copy, Clone, Eq, PartialEq, Hash, Default)]
struct $name {}
impl $crate::algo_lib::misc::value::DynamicValue<$t> for $name {
fn set_val(t: $t) {
unsafe {
$val = Some(t);
}
}
}
impl $crate::algo_lib::misc::value::Value<$t> for $name {
fn val() -> $t {
unsafe { $val.unwrap() }
}
}
};
($name: ident: $t: ty) => {
dynamic_value!($name: $t, VAL);
};
($name: ident: $t: ty = $val: expr) => {
dynamic_value!($name: $t);
$name::set_val($val);
};
($name: ident: $t: ty = $val: expr, $val_static: ident) => {
dynamic_value!($name: $t, $val_static);
$name::set_val($val);
};
}
}
pub mod when {
#[macro_export]
macro_rules! when {
{$($cond: expr => $then: expr,)*} => {
match () {
$(_ if $cond => $then,)*
_ => unreachable!(),
}
};
{$($cond: expr => $then: expr,)* else $(=>)? $else: expr$(,)?} => {
match () {
$(_ if $cond => $then,)*
_ => $else,
}
};
}
}
}
pub mod numbers {
pub mod gcd {
use crate::algo_lib::numbers::num_traits::algebra::IntegerMultiplicationMonoid;
use crate::algo_lib::numbers::num_traits::algebra::IntegerSemiRingWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::SemiRingWithSub;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use crate::algo_lib::numbers::num_traits::wideable::Wideable;
use std::mem::swap;
pub fn extended_gcd<T: IntegerSemiRingWithSub + Wideable + Copy>(a: T, b: T) -> (T, T::W, T::W)
where
T::W: Copy + SemiRingWithSub,
{
if a == T::zero() {
(b, T::W::zero(), T::W::one())
} else {
let (d, y, mut x) = extended_gcd(b % a, a);
x -= T::W::from(b / a) * y;
(d, x, y)
}
}
pub fn gcd<T: Copy + Zero + IntegerMultiplicationMonoid>(mut a: T, mut b: T) -> T {
while b != T::zero() {
a %= b;
swap(&mut a, &mut b);
}
a
}
pub fn lcm<T: Copy + Zero + IntegerMultiplicationMonoid>(a: T, b: T) -> T {
(a / gcd(a, b)) * b
}
}
pub mod mod_int {
use crate::algo_lib::collections::fx_hash_map::FxHashMap;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use crate::algo_lib::misc::value::Value;
use crate::algo_lib::numbers::gcd::extended_gcd;
use crate::algo_lib::numbers::num_traits::algebra::Field;
use crate::algo_lib::numbers::num_traits::algebra::IntegerRing;
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Ring;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use crate::algo_lib::numbers::num_traits::wideable::Wideable;
use crate::value;
use crate::when;
use std::fmt::Display;
use std::fmt::Formatter;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait BaseModInt: Field + Copy {
type W: IntegerRing + Copy + From<Self::T>;
type T: IntegerRing + Ord + Copy + Wideable<W = Self::W>;
fn from(v: Self::T) -> Self;
fn module() -> Self::T;
}
#[derive(Copy, Clone, Eq, PartialEq, Hash, Default)]
pub struct ModInt<T, V: Value<T>> {
n: T,
phantom: PhantomData<V>,
}
impl<T: Copy, V: Value<T>> ModInt<T, V> {
pub fn val(&self) -> T {
self.n
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> ModInt<T, V> {
unsafe fn unchecked_new(n: T) -> Self {
debug_assert!(n >= T::zero() && n < V::val());
Self {
n,
phantom: Default::default(),
}
}
unsafe fn maybe_subtract_mod(mut n: T) -> T {
debug_assert!(n < V::val() + V::val() && n >= T::zero());
if n >= V::val() {
n -= V::val();
}
n
}
}
impl<T: IntegerRing + Ord + Copy, V: Value<T>> ModInt<T, V> {
pub fn new(n: T) -> Self {
unsafe { Self::unchecked_new(Self::maybe_subtract_mod(n % (V::val()) + V::val())) }
}
}
impl<T: Copy + IntegerRing + Ord + Wideable + Hash, V: Value<T>> ModInt<T, V>
where
T::W: Copy + IntegerRing,
{
pub fn log(&self, alpha: Self) -> T {
let mut base = FxHashMap::default();
let mut exp = T::zero();
let mut pow = Self::one();
let mut inv = *self;
let alpha_inv = alpha.inv().unwrap();
while exp * exp < Self::module() {
if inv == Self::one() {
return exp;
}
base.insert(inv, exp);
exp += T::one();
pow *= alpha;
inv *= alpha_inv;
}
let step = pow;
let mut i = T::one();
loop {
if let Some(b) = base.get(&pow) {
break exp * i + *b;
}
pow *= step;
i += T::one();
}
}
}
impl<T: Wideable + Ring + Ord + Copy, V: Value<T>> ModInt<T, V>
where
T::W: IntegerRing,
{
pub fn new_from_wide(n: T::W) -> Self {
unsafe {
Self::unchecked_new(Self::maybe_subtract_mod(
T::downcast(n % V::val().into()) + V::val(),
))
}
}
}
impl<T: Copy + IntegerRing + Ord + Wideable, V: Value<T>> Invertible for ModInt<T, V>
where
T::W: Copy + IntegerRing,
{
type Output = Self;
fn inv(&self) -> Option<Self> {
let (g, x, _) = extended_gcd(self.n, V::val());
if g != T::one() {
None
} else {
Some(Self::new_from_wide(x))
}
}
}
impl<T: IntegerRing + Ord + Copy + Wideable, V: Value<T>> BaseModInt for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
type W = T::W;
type T = T;
fn from(v: Self::T) -> Self {
Self::new(v)
}
fn module() -> T {
V::val()
}
}
impl<T: IntegerRing + Ord + Copy, V: Value<T>> From<T> for ModInt<T, V> {
fn from(n: T) -> Self {
Self::new(n)
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> AddAssign for ModInt<T, V> {
fn add_assign(&mut self, rhs: Self) {
self.n = unsafe { Self::maybe_subtract_mod(self.n + rhs.n) };
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> Add for ModInt<T, V> {
type Output = Self;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> SubAssign for ModInt<T, V> {
fn sub_assign(&mut self, rhs: Self) {
self.n = unsafe { Self::maybe_subtract_mod(self.n + V::val() - rhs.n) };
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> Sub for ModInt<T, V> {
type Output = Self;
fn sub(mut self, rhs: Self) -> Self::Output {
self -= rhs;
self
}
}
impl<T: IntegerRing + Ord + Copy + Wideable, V: Value<T>> MulAssign for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
fn mul_assign(&mut self, rhs: Self) {
self.n = T::downcast(T::W::from(self.n) * T::W::from(rhs.n) % T::W::from(V::val()));
}
}
impl<T: IntegerRing + Ord + Copy + Wideable, V: Value<T>> Mul for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
type Output = Self;
fn mul(mut self, rhs: Self) -> Self::Output {
self *= rhs;
self
}
}
impl<T: IntegerRing + Ord + Copy + Wideable, V: Value<T>> DivAssign for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
#[allow(clippy::suspicious_op_assign_impl)]
fn div_assign(&mut self, rhs: Self) {
*self *= rhs.inv().unwrap();
}
}
impl<T: IntegerRing + Ord + Copy + Wideable, V: Value<T>> Div for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
type Output = Self;
fn div(mut self, rhs: Self) -> Self::Output {
self /= rhs;
self
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> Neg for ModInt<T, V> {
type Output = Self;
fn neg(mut self) -> Self::Output {
self.n = unsafe { Self::maybe_subtract_mod(V::val() - self.n) };
self
}
}
impl<T: Display, V: Value<T>> Display for ModInt<T, V> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
<T as Display>::fmt(&self.n, f)
}
}
impl<T: IntegerRing + Ord + Copy + Readable, V: Value<T>> Readable for ModInt<T, V> {
fn read(input: &mut Input) -> Self {
Self::new(T::read(input))
}
}
impl<T: Writable, V: Value<T>> Writable for ModInt<T, V> {
fn write(&self, output: &mut Output) {
self.n.write(output);
}
}
impl<T: Ring + Ord + Copy, V: Value<T>> Zero for ModInt<T, V> {
fn zero() -> Self {
unsafe { Self::unchecked_new(T::zero()) }
}
}
impl<T: IntegerRing + Ord + Copy, V: Value<T>> One for ModInt<T, V> {
fn one() -> Self {
Self::new(T::one())
}
}
impl<T, V: Value<T>> Wideable for ModInt<T, V> {
type W = Self;
fn downcast(w: Self::W) -> Self {
w
}
}
impl<T: IntegerRing + Ord + Copy + Wideable + Display + AsIndex, V: Value<T>> std::fmt::Debug
for ModInt<T, V>
where
T::W: IntegerRing + Copy,
{
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
let max = T::from_index(100);
when! {
self.n <= max => write!(f, "{}", self.n),
self.n >= V::val() - max => write!(f, "{}", self.n - V::val()),
else => {
let mut denominator = T::one();
while denominator < max {
let mut num = T::one();
while num < max {
if Self::new(num) / Self::new(denominator) == *self {
return write!(f, "{}/{}", num, denominator);
}
if -Self::new(num) / Self::new(denominator) == *self {
return write!(f, "-{}/{}", num, denominator);
}
num += T::one();
}
denominator += T::one();
}
write!(f, "(?? {} ??)", self.n)
},
}
}
}
impl<T: IntegerRing + Ord + Copy + AsIndex + Wideable, V: Value<T>> AsIndex for ModInt<T, V>
where
T::W: AsIndex + IntegerRing + Ord,
{
fn from_index(idx: usize) -> Self {
let t = T::W::from_index(idx);
if t >= T::W::from(V::val()) {
Self::new_from_wide(t)
} else {
unsafe { Self::unchecked_new(T::downcast(t)) }
}
}
fn to_index(self) -> usize {
self.n.to_index()
}
}
value!(Val7: i32 = 1_000_000_007);
pub type ModInt7 = ModInt<i32, Val7>;
value!(Val9: i32 = 1_000_000_009);
pub type ModInt9 = ModInt<i32, Val9>;
value!(ValF: i32 = 998_244_353);
pub type ModIntF = ModInt<i32, ValF>;
}
pub mod mod_utils {
use crate::algo_lib::numbers::mod_int::BaseModInt;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
use crate::algo_lib::numbers::num_utils::factorial;
use crate::algo_lib::numbers::num_utils::factorials;
pub fn inverses<M: BaseModInt>(len: usize) -> Vec<M>
where
M::T: AsIndex,
{
let mut res = Vec::new();
if len > 0 {
res.push(M::zero());
}
if len > 1 {
res.push(M::one());
}
while res.len() < len {
res.push(
res[M::module().to_index() % res.len()]
* (M::from(M::module() / (M::T::from_index(res.len()))).neg()),
);
}
res
}
pub fn inverse_factorials<M: BaseModInt>(len: usize) -> Vec<M>
where
M::T: AsIndex,
{
let mut res = inverses(len);
if len > 0 {
res[0] = M::one();
}
for i in 1..len {
let last = res[i - 1];
res[i] *= last;
}
res
}
pub struct Combinations<M: BaseModInt>
where
M::T: AsIndex,
{
fact: Vec<M>,
inv_fact: Vec<M>,
}
impl<M: BaseModInt + AsIndex> Combinations<M>
where
M::T: AsIndex,
{
pub fn new(len: usize) -> Self {
Self {
fact: factorials(len),
inv_fact: inverse_factorials(len),
}
}
pub fn c(&self, n: usize, k: usize) -> M {
if n < k {
M::zero()
} else {
self.fact[n] * self.inv_fact[k] * self.inv_fact[n - k]
}
}
pub fn comb_with_rep(&self, n: usize, k: usize) -> M {
self.c(n + k - 1, k)
}
pub fn c_inv(&self, n: usize, k: usize) -> M {
self.inv_fact[n] * self.fact[k] * self.fact[n - k]
}
pub fn fact(&self, n: usize) -> M {
self.fact[n]
}
pub fn inv_fact(&self, n: usize) -> M {
self.inv_fact[n]
}
}
pub fn combinations<M: BaseModInt + AsIndex>(n: usize, mut k: usize) -> M {
if k > n {
return M::zero();
}
if k > n - k {
k = n - k;
}
let mut res = M::one();
for i in n - k + 1..=n {
res *= M::from_index(i);
}
res /= factorial(k);
res
}
}
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}
pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}
impl One for $t {
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod as_index {
pub trait AsIndex {
fn from_index(idx: usize) -> Self;
fn to_index(self) -> usize;
}
macro_rules! from_index_impl {
($($t: ident)+) => {$(
impl AsIndex for $t {
fn from_index(idx: usize) -> Self {
idx as $t
}
fn to_index(self) -> usize {
self as usize
}
}
)+};
}
from_index_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
pub mod wideable {
use std::convert::From;
pub trait Wideable: Sized {
type W: From<Self>;
fn downcast(w: Self::W) -> Self;
}
macro_rules! wideable_impl {
($($t: ident $w: ident),+) => {$(
impl Wideable for $t {
type W = $w;
fn downcast(w: Self::W) -> Self {
w as $t
}
}
)+};
}
wideable_impl!(i64 i128, i32 i64, i16 i32, i8 i16, u64 u128, u32 u64, u16 u32, u8 u16);
}
}
pub mod num_utils {
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoid;
use crate::algo_lib::numbers::num_traits::algebra::IntegerRing;
use crate::algo_lib::numbers::num_traits::algebra::MultiplicationMonoid;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
pub fn factorials<T: MultiplicationMonoid + Copy + AsIndex>(len: usize) -> Vec<T> {
let mut res = Vec::new();
if len > 0 {
res.push(T::one());
}
while res.len() < len {
res.push((*res.last().unwrap()) * T::from_index(res.len()));
}
res
}
pub fn powers<T: MultiplicationMonoid + Copy>(base: T, len: usize) -> Vec<T> {
let mut res = Vec::new();
if len > 0 {
res.push(T::one());
}
while res.len() < len {
res.push((*res.last().unwrap()) * base);
}
res
}
pub struct Powers<T: MultiplicationMonoid + Copy> {
small: Vec<T>,
big: Vec<T>,
}
impl<T: MultiplicationMonoid + Copy> Powers<T> {
pub fn new(base: T, len: usize) -> Self {
let small = powers(base, len);
let big = powers(small[len - 1] * base, len);
Self { small, big }
}
pub fn power(&self, exp: usize) -> T {
debug_assert!(exp < self.small.len() * self.small.len());
self.big[exp / self.small.len()] * self.small[exp % self.small.len()]
}
}
pub fn factorial<T: MultiplicationMonoid + AsIndex>(n: usize) -> T {
let mut res = T::one();
for i in 1..=n {
res *= T::from_index(i);
}
res
}
pub trait PartialSums<T> {
fn partial_sums(&self) -> Vec<T>;
}
impl<T: AdditionMonoid + Copy> PartialSums<T> for [T] {
fn partial_sums(&self) -> Vec<T> {
let mut res = Vec::with_capacity(self.len() + 1);
res.push(T::zero());
for i in self.iter() {
res.push(*res.last().unwrap() + *i);
}
res
}
}
pub trait UpperDiv {
fn upper_div(self, other: Self) -> Self;
}
impl<T: IntegerRing + Copy> UpperDiv for T {
fn upper_div(self, other: Self) -> Self {
(self + other - Self::one()) / other
}
}
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = algo_lib::io::output::Output::new(&mut stdout);
solution::run(input, output);
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2116kb
input:
4 3
output:
7
result:
ok 1 number(s): "7"
Test #2:
score: 0
Accepted
time: 0ms
memory: 2168kb
input:
11 4
output:
1187
result:
ok 1 number(s): "1187"
Test #3:
score: 0
Accepted
time: 3ms
memory: 2832kb
input:
100000 99999
output:
17356471
result:
ok 1 number(s): "17356471"
Test #4:
score: 0
Accepted
time: 1ms
memory: 2320kb
input:
11451 1919
output:
845616153
result:
ok 1 number(s): "845616153"
Test #5:
score: 0
Accepted
time: 7ms
memory: 3140kb
input:
99998 12345
output:
936396560
result:
ok 1 number(s): "936396560"
Test #6:
score: 0
Accepted
time: 3ms
memory: 2744kb
input:
100000 1
output:
0
result:
ok 1 number(s): "0"
Test #7:
score: 0
Accepted
time: 13ms
memory: 3220kb
input:
100000 15
output:
190067060
result:
ok 1 number(s): "190067060"
Test #8:
score: 0
Accepted
time: 0ms
memory: 2212kb
input:
10 3
output:
299
result:
ok 1 number(s): "299"
Test #9:
score: 0
Accepted
time: 0ms
memory: 2164kb
input:
10 4
output:
743
result:
ok 1 number(s): "743"
Test #10:
score: 0
Accepted
time: 0ms
memory: 2224kb
input:
10 5
output:
1129
result:
ok 1 number(s): "1129"
Test #11:
score: 0
Accepted
time: 0ms
memory: 2152kb
input:
15 6
output:
28006
result:
ok 1 number(s): "28006"
Test #12:
score: 0
Accepted
time: 0ms
memory: 2156kb
input:
15 7
output:
42035
result:
ok 1 number(s): "42035"
Test #13:
score: 0
Accepted
time: 0ms
memory: 2300kb
input:
123 45
output:
214851327
result:
ok 1 number(s): "214851327"
Test #14:
score: 0
Accepted
time: 0ms
memory: 2244kb
input:
998 244
output:
964050559
result:
ok 1 number(s): "964050559"
Test #15:
score: 0
Accepted
time: 0ms
memory: 2192kb
input:
1919 810
output:
379720338
result:
ok 1 number(s): "379720338"
Test #16:
score: 0
Accepted
time: 0ms
memory: 2272kb
input:
1048 576
output:
216543264
result:
ok 1 number(s): "216543264"
Test #17:
score: 0
Accepted
time: 0ms
memory: 2220kb
input:
999 777
output:
635548531
result:
ok 1 number(s): "635548531"
Test #18:
score: 0
Accepted
time: 3ms
memory: 2944kb
input:
99999 77777
output:
448144614
result:
ok 1 number(s): "448144614"
Test #19:
score: 0
Accepted
time: 2ms
memory: 2616kb
input:
34527 6545
output:
748108997
result:
ok 1 number(s): "748108997"
Test #20:
score: 0
Accepted
time: 2ms
memory: 2384kb
input:
12345 12
output:
777496209
result:
ok 1 number(s): "777496209"
Test #21:
score: 0
Accepted
time: 0ms
memory: 2204kb
input:
1 1
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 3ms
memory: 3136kb
input:
100000 10101
output:
855985819
result:
ok 1 number(s): "855985819"
Test #23:
score: 0
Accepted
time: 3ms
memory: 2908kb
input:
100000 91919
output:
92446940
result:
ok 1 number(s): "92446940"
Test #24:
score: 0
Accepted
time: 3ms
memory: 2908kb
input:
100000 77979
output:
106899398
result:
ok 1 number(s): "106899398"
Test #25:
score: 0
Accepted
time: 2ms
memory: 2432kb
input:
10000 11
output:
326411649
result:
ok 1 number(s): "326411649"
Test #26:
score: 0
Accepted
time: 5ms
memory: 2756kb
input:
100000 2
output:
15322970
result:
ok 1 number(s): "15322970"
Test #27:
score: 0
Accepted
time: 12ms
memory: 3048kb
input:
100000 3
output:
93355797
result:
ok 1 number(s): "93355797"
Test #28:
score: 0
Accepted
time: 4ms
memory: 2996kb
input:
100000 99998
output:
331850772
result:
ok 1 number(s): "331850772"
Test #29:
score: 0
Accepted
time: 3ms
memory: 2780kb
input:
100000 99996
output:
885066226
result:
ok 1 number(s): "885066226"
Test #30:
score: 0
Accepted
time: 0ms
memory: 2380kb
input:
13115 2964
output:
0
result:
ok 1 number(s): "0"
Test #31:
score: 0
Accepted
time: 13ms
memory: 3116kb
input:
100000 17
output:
425792977
result:
ok 1 number(s): "425792977"
Test #32:
score: 0
Accepted
time: 17ms
memory: 3160kb
input:
99991 16
output:
667323936
result:
ok 1 number(s): "667323936"
Test #33:
score: 0
Accepted
time: 17ms
memory: 3148kb
input:
99991 17
output:
627396741
result:
ok 1 number(s): "627396741"
Test #34:
score: 0
Accepted
time: 19ms
memory: 3040kb
input:
99991 18
output:
874158501
result:
ok 1 number(s): "874158501"
Test #35:
score: 0
Accepted
time: 3ms
memory: 2808kb
input:
100000 100000
output:
99999
result:
ok 1 number(s): "99999"
Test #36:
score: 0
Accepted
time: 3ms
memory: 2816kb
input:
94229 94229
output:
94228
result:
ok 1 number(s): "94228"
Test #37:
score: 0
Accepted
time: 3ms
memory: 2884kb
input:
94229 94223
output:
476599876
result:
ok 1 number(s): "476599876"
Test #38:
score: 0
Accepted
time: 0ms
memory: 2116kb
input:
2 1
output:
0
result:
ok 1 number(s): "0"
Test #39:
score: 0
Accepted
time: 0ms
memory: 2116kb
input:
2 2
output:
0
result:
ok 1 number(s): "0"
Test #40:
score: 0
Accepted
time: 0ms
memory: 2320kb
input:
3 1
output:
0
result:
ok 1 number(s): "0"
Test #41:
score: 0
Accepted
time: 0ms
memory: 2220kb
input:
3 2
output:
2
result:
ok 1 number(s): "2"
Test #42:
score: 0
Accepted
time: 0ms
memory: 2240kb
input:
3 3
output:
2
result:
ok 1 number(s): "2"
Test #43:
score: 0
Accepted
time: 0ms
memory: 2356kb
input:
9 2
output:
44
result:
ok 1 number(s): "44"
Test #44:
score: 0
Accepted
time: 0ms
memory: 2168kb
input:
9 3
output:
206
result:
ok 1 number(s): "206"
Test #45:
score: 0
Accepted
time: 0ms
memory: 2352kb
input:
9 4
output:
441
result:
ok 1 number(s): "441"
Test #46:
score: 0
Accepted
time: 0ms
memory: 2220kb
input:
9 7
output:
224
result:
ok 1 number(s): "224"
Test #47:
score: 0
Accepted
time: 4ms
memory: 2692kb
input:
70839 22229
output:
0
result:
ok 1 number(s): "0"
Test #48:
score: 0
Accepted
time: 12ms
memory: 2772kb
input:
65536 17
output:
698801006
result:
ok 1 number(s): "698801006"
Test #49:
score: 0
Accepted
time: 11ms
memory: 2784kb
input:
65535 17
output:
433312902
result:
ok 1 number(s): "433312902"
Test #50:
score: 0
Accepted
time: 15ms
memory: 3144kb
input:
99856 317
output:
932131332
result:
ok 1 number(s): "932131332"
Test #51:
score: 0
Accepted
time: 11ms
memory: 3092kb
input:
99856 318
output:
398997854
result:
ok 1 number(s): "398997854"
Test #52:
score: 0
Accepted
time: 7ms
memory: 2944kb
input:
99856 2
output:
984791559
result:
ok 1 number(s): "984791559"
Test #53:
score: 0
Accepted
time: 4ms
memory: 2828kb
input:
100000 50000
output:
309108799
result:
ok 1 number(s): "309108799"
Extra Test:
score: 0
Extra Test Passed