QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#754665 | #9558. The Devil | ucup-team3586# | TL | 329ms | 56968kb | C++23 | 14.8kb | 2024-11-16 15:31:06 | 2024-11-16 15:31:07 |
Judging History
answer
#include<bits/stdc++.h>
//ATCoder Lib
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
} // namespace internal
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
explicit mcf_graph(int n) : _n(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
assert(0 <= cost);
int m = int(_edges.size());
_edges.push_back({from, to, cap, 0, cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
std::vector<edge> edges() { return _edges; }
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
int m = int(_edges.size());
std::vector<int> edge_idx(m);
auto g = [&]() {
std::vector<int> degree(_n), redge_idx(m);
std::vector<std::pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(_n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, s, t, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
int _n;
std::vector<edge> _edges;
// inside edge
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
int s,
int t,
Cap flow_limit) {
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
// dual_dist[i] = (dual[i], dist[i])
std::vector<std::pair<Cost, Cost>> dual_dist(_n);
std::vector<int> prev_e(_n);
std::vector<bool> vis(_n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::vector<int> que_min;
std::vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < _n; i++) {
dual_dist[i].second = std::numeric_limits<Cost>::max();
}
std::fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
// que[0..heap_r) was heapified
size_t heap_r = 0;
dual_dist[s].second = 0;
que_min.push_back(s);
while (!que_min.empty() || !que.empty()) {
int v;
if (!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while (heap_r < que.size()) {
heap_r++;
std::push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
std::pop_heap(que.begin(), que.end());
que.pop_back();
heap_r--;
}
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second - dist_v > cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if (dist_to == dist_v) {
que_min.push_back(e.to);
} else {
que.push_back(Q{dist_to, e.to});
}
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
// (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
// t) + dual[t] + shortest(s, v) = shortest(s, v) -
// shortest(s, t) >= 0 - (n-1)C
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
};
}
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
explicit mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
// printf("%d %d %d\n",from,to,cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
}
using namespace atcoder;
using namespace std;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
string curtoken,a[1<<20];
int len;
bool readtoken()
{
curtoken="";
char c=getchar();
while(!islower(c)&&!isupper(c)) c=getchar();
while(1)
{
if(islower(c)||isupper(c)) curtoken+=c;
else if(c==' ')
{
a[++len]=curtoken;
return 1;
}
else
{
a[++len]=curtoken;
return 0;
}c=getchar();
}
}
int n=read(),m=n+2;
int sz;
mcf_graph<int,int> G(1e6);
map<string,int> mp;
int S=n+1,T=n+2;
string arr[100003];
int tr[1<<23][52],dep[1<<23],fa[1<<23],cnt;
char fr[1<<23];
struct node{int cur;int x;bool first;
bool operator<(const node&t)const{return dep[cur]>dep[t.cur];}};
string ans[1003];
int instrans(int x,char c)
{
int o=c-'a';
if(isupper(c)) o=c-'A'+26;
if(!tr[x][o]) tr[x][o]=++cnt,fr[cnt]=c,
dep[cnt]=dep[x]+1,fa[cnt]=x;
return tr[x][o];
}
int Hash(int pt)
{
string s;
while(pt>1)
{
s.push_back(fr[pt]);
pt=fa[pt];
}
reverse(s.begin(),s.end());
if(!mp.count(s))
{
mp[s]=++m;
arr[m]=s;
G.add_edge(m,T,1,s.size());
}
return mp[s];
}
signed main()
{
for(int i=1; i<=n; ++i)
G.add_edge(S,i,1,0);
// puts("QAQ");
for(int id=1; id<=n; ++id)
{
for(int j=1; j<=cnt; ++j)
memset(tr[j],0,sizeof(tr[j]));
cnt=1;
sz=0;
len=0;
while(readtoken());
priority_queue<node> q;
q.push((node){1,1,1});
while(!q.empty()&&sz<n)
{
auto i=q.top();
q.pop();
if(i.x>len)
{
++sz;
G.add_edge(id,Hash(i.cur),1,0);
// st.insert(cur);
continue;
}
if(i.first)
{
char Last=fr[i.cur];
if(Last==a[i.x][0]) continue;
}
bool first=0;
for(char ii:a[i.x])
{
// i.cur.push_back(ii);
i.cur=instrans(i.cur,ii);
q.push((node){i.cur,i.x+1,first});
// dfs(x+1,first);
first=1;
// if(sz>=n) return ;
}
// for(auto i:a[x]) cur.pop_back();
}
}
// printf("%d\n",m);
auto [flow,cost]=G.flow(S,T);
// printf("%d\n",cost);
// printf("%d\n",flow);
if(flow!=n) puts("no solution"),exit(0);
auto it=G.edges();
for(auto i:it)
if(i.to>n+2&&i.flow)
ans[i.from]=arr[i.to];
for(int i=1; i<=n; ++i)
cout<<ans[i]<<endl;
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 11ms
memory: 56080kb
input:
5 automated teller machine active teller machine active trouble maker always telling misinformation American Teller Machinery
output:
atma actm atrm atm ATM
result:
ok len=18
Test #2:
score: 0
Accepted
time: 8ms
memory: 55728kb
input:
5 Forest Conservation Committee Forum Fuming Corruption Collusion Federation Fulsome Cash Concealment Foundation Funky Crony Capitalism Facilitator Funny Cocky Cocky Funny
output:
FCCoF FuCCF FCaCF FCrCF FCCF
result:
ok len=24
Test #3:
score: 0
Accepted
time: 7ms
memory: 55844kb
input:
3 A AA AA A A A A
output:
no solution
result:
ok len=-1
Test #4:
score: 0
Accepted
time: 8ms
memory: 56080kb
input:
2 QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnmertyuiop Q W E R T Y U I O P A S D F G H J K L Z X C V B N M q w e r t y u i o p a s d f g h j k l z x c v b n m j k l z x c v b n m
output:
Q QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnmjklzxcvbnm
result:
ok len=63
Test #5:
score: 0
Accepted
time: 21ms
memory: 55040kb
input:
10 aaa aaa aaa aaa aaa aaa aab aaa aaa aaa aaa aaa aaa aab aaa aaa aaa aaa aab aab aaa aaa aaa aaa a a a a a a ab ab a a a a a a ab ab b a a a a a a aw a a a a a az az a a a a az a a a a a
output:
aaaaaaaa aabaaaaa aaabaaaa aaaaaaa aaaaaa abaaaaaaa aabaaaaaa awaaaaa aazaaaa azaaaaa
result:
ok len=76
Test #6:
score: 0
Accepted
time: 329ms
memory: 56968kb
input:
128 zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...
output:
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...
result:
ok len=24512
Test #7:
score: -100
Time Limit Exceeded
input:
128 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaar aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...