QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#75462 | #5461. Paddle Star | rin204 | AC ✓ | 167ms | 3752kb | C++17 | 7.5kb | 2023-02-05 11:58:57 | 2023-02-05 11:59:01 |
Judging History
answer
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
#define endl "\n"
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)
#define fori1(a) for(ll _ = 0; _ < (a); _++)
#define fori2(i, a) for(ll i = 0; i < (a); i++)
#define fori3(i, a, b) for(ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for(ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
template <typename T>
vector<tuple<ll, T>> ENUMERATE(vector<T> &A, ll s = 0){
vector<tuple<ll, T>> ret(A.size());
for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]};
return ret;
}
vector<tuple<ll, char>> ENUMERATE(string &A, ll s = 0){
vector<tuple<ll, char>> ret(A.size());
for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]};
return ret;
}
#define enum1(A) fori(A.size())
#define enum2(a, A) for(auto a:A)
#define enum3(i, a, A) for(auto&& [i, a]: ENUMERATE(A))
#define enum4(i, a, A, s) for(auto&& [i, a]: ENUMERATE(A, s))
#define enum(...) overload4(__VA_ARGS__, enum4, enum3, enum2, enum1)(__VA_ARGS__)
template <typename T, typename S>
vector<tuple<T, S>> ZIP(vector<T> &A, vector<S> &B){
int n = min(A.size(), B.size());
vector<tuple<T, S>> ret(n);
for(int i = 0; i < n; i++) ret[i] = {A[i], B[i]};
return ret;
}
template <typename T, typename S>
vector<tuple<ll, T, S>> ENUMZIP(vector<T> &A, vector<S> &B, ll s = 0){
int n = min(A.size(), B.size());
vector<tuple<ll, T, S>> ret(n);
for(int i = 0; i < n; i++) ret[i] = {i + s, A[i], B[i]};
return ret;
}
#define zip4(a, b, A, B) for(auto&& [a, b]: ZIP(A, B))
#define enumzip5(i, a, b, A, B) for(auto&& [i, a, b]: ENUMZIP(A, B))
#define enumzip6(i, a, b, A, B, s) for(auto&& [i, a, b]: ENUMZIP(A, B, s))
#define overload6(a, b, c, d, e, f, g, ...) g
#define zip(...) overload6(__VA_ARGS__, enumzip6, enumzip5, zip4, _, _, _)(__VA_ARGS__)
vector<char> stoc(string &S){
int n = S.size();
vector<char> ret(n);
for(int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
template<class T> auto min(const T& a){
return *min_element(all(a));
}
template<class T> auto max(const T& a){
return *max_element(all(a));
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
void FLUSH(){cout << flush;}
void print(){cout << endl;}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(forward<Tail>(tail)...);
}
template<typename T>
void print(vector<T> &A){
int n = A.size();
for(int i = 0; i < n; i++){
cout << A[i];
if(i == n - 1) cout << endl;
else cout << spa;
}
}
template<typename T>
void print(vector<vector<T>> &A){
for(auto &row: A) print(row);
}
template<typename T, typename S>
void print(pair<T, S> &A){
cout << A.first << spa << A.second << endl;
}
template<typename T, typename S>
void print(vector<pair<T, S>> &A){
for(auto &row: A) print(row);
}
template<typename T, typename S>
void prisep(vector<T> &A, S sep){
int n = A.size();
for(int i = 0; i < n; i++){
cout << A[i];
if(i == n - 1) cout << endl;
else cout << sep;
}
}
template<typename T, typename S>
void priend(T A, S end){
cout << A << end;
}
template<typename T>
void priend(T A){
priend(A, spa);
}
template<class... T>
void inp(T&... a){
(cin >> ... >> a);
}
template<typename T>
void inp(vector<T> &A){
for(auto &a:A) cin >> a;
}
template<typename T>
void inp(vector<vector<T>> &A){
for(auto &row:A) inp(row);
}
template<typename T, typename S>
void inp(pair<T, S> &A){
inp(A.first, A.second);
}
template<typename T, typename S>
void inp(vector<pair<T, S>> &A){
for(auto &row: A) inp(row.first, row.second);
}
template<typename T>
T sum(vector<T> &A){
T tot = 0;
for(auto a:A) tot += a;
return tot;
}
template<typename T>
pair<vector<T>, map<T, int>> compression(vector<T> X){
sort(all(X));
X.erase(unique(all(X)), X.end());
map<T, int> mp;
for(int i = 0; i < X.size(); i++) mp[X[i]] = i;
return {X, mp};
}
using ld = long double;
const ld PI = acos(-1);
complex<ld> intersection(complex<ld> &p1, complex<ld> &p2, complex<ld> &p3, complex<ld> &p4){
ld det = (p1.real() - p2.real()) * (p4.imag() - p3.imag()) - (p4.real() - p3.real()) * (p1.imag() - p2.imag());
ld t = ((p4.imag() - p3.imag()) * (p4.real() - p2.real()) + (p3.real() - p4.real()) * (p4.imag() - p2.imag())) / det;
ld x = t * p1.real() + (1.0 - t) * p2.real();
ld y = t * p1.imag() + (1.0 - t) * p2.imag();
return complex<ld>{x, y};
}
void solve(){
INT(L1, L2, alpha, beta);
ld l1 = L1;
ld l2 = L2;
ld alrad = ld(alpha * PI / 180.0);
ld berad = ld(beta * PI / 180.0);
ld ans = 0;
ld l = l1 + l2;
ans += l * l * alrad;
ans += l2 * l2 * berad;
if((beta <= 90) || (beta == 180)){
print(ans);
return;
}
complex<ld> O, pr, pl, qr, ql;
O = {0, 0};
pr = l1 * complex<ld>{cos(PI / 2 - alrad), sin(PI / 2 - alrad)};
pl = l1 * complex<ld>{cos(PI / 2 + alrad), sin(PI / 2 + alrad)};
qr = pr + l2 * complex<ld>{cos(PI / 2 - alrad - berad), sin(PI / 2 - alrad - berad)};
ql = pl + l2 * complex<ld>{cos(PI / 2 + alrad - berad), sin(PI / 2 + alrad - berad)};
auto projection=[](complex<ld> &a, complex<ld> &b, complex<ld> &p){
auto d1 = p - a;
auto d2 = a - b;
ld t = (d1.real() * d2.real() + d1.imag() * d2.imag()) / norm(a - b);
return a + (a - b) * t;
};
auto pqro = projection(pr, qr, O);
if(pqro.imag() > qr.imag()) qr = pqro;
ld theta = atan2(qr.imag(), qr.real());
ld dtheta = PI / 2 - alrad - theta;
ld darea = 0;
ld r = abs(qr);
darea += abs(pr.imag() * qr.real() - pr.real() * qr.imag()) / 2.0;
if(dtheta <= 2 * alrad){
darea -= r * r * dtheta / 2.0;
}
else{
darea -= r * r * 2.0 * alrad / 2.0;
auto pq = qr * complex<ld>{cos(alrad * 2), sin(alrad * 2)};
complex<ld> ppp = {cos(PI / 2.0 - alrad * 3.0), sin(PI / 2.0 - alrad * 3.0)};
auto pp = intersection(O, ppp, pr, qr);
pr /= abs(pr);
pr *= abs(pp);
darea -= abs(pr.imag() * pq.real() - pr.real() * pq.imag()) / 2.0;
}
// print(ans, darea);
ans += 2 * darea;
print(ans);
}
int main(){
cin.tie(0)->sync_with_stdio(0);
cout << fixed << setprecision(12);
int t;
t = 1;
cin >> t;
while(t--) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3744kb
input:
5 2 1 20 20 3 3 0 0 20 20 90 120 20 10 50 170 100 10 1 93
output:
3.490658503989 0.000000000000 3367.157611906511 1098.863278984082 373.960489570088
result:
ok 5 numbers
Test #2:
score: 0
Accepted
time: 126ms
memory: 3672kb
input:
100000 88 12 24 116 79 15 84 150 96 52 31 141 100 100 81 29 83 29 71 99 95 92 5 87 99 97 39 72 79 72 20 65 67 39 60 116 100 89 1 62 78 77 63 45 62 34 83 178 92 49 24 103 94 73 66 49 20 14 24 51 100 97 66 109 94 94 86 82 82 79 49 67 76 38 88 118 92 79 58 112 93 23 40 167 87 34 13 25 96 18 73 15 94 38...
output:
4526.991613202875 13636.479265474325 19433.170502612670 61610.122595399832 17006.233726987326 15903.667036975090 37972.639843450069 13840.111902464634 14968.804520318270 9194.795925234087 31073.492936656644 16982.120743226402 12675.930420194697 36683.242951954218 658.687259702660 62718.197215759167 ...
result:
ok 100000 numbers
Test #3:
score: 0
Accepted
time: 106ms
memory: 3636kb
input:
100000 1 1 0 0 1 1 0 1 1 1 0 2 1 1 0 3 1 1 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 1 0 8 1 1 0 9 1 1 0 10 1 1 0 11 1 1 0 12 1 1 0 13 1 1 0 14 1 1 0 15 1 1 0 16 1 1 0 17 1 1 0 18 1 1 0 19 1 1 0 20 1 1 0 21 1 1 0 22 1 1 0 23 1 1 0 24 1 1 0 25 1 1 0 26 1 1 0 27 1 1 0 28 1 1 0 29 1 1 0 30 1 1 0 31 1 1 0 32 1 1 0 ...
output:
0.000000000000 0.017453292520 0.034906585040 0.052359877560 0.069813170080 0.087266462600 0.104719755120 0.122173047640 0.139626340160 0.157079632679 0.174532925199 0.191986217719 0.209439510239 0.226892802759 0.244346095279 0.261799387799 0.279252680319 0.296705972839 0.314159265359 0.331612557879 ...
result:
ok 100000 numbers
Test #4:
score: 0
Accepted
time: 98ms
memory: 3636kb
input:
100000 1 1 0 0 1 1 0 1 1 1 0 2 1 1 0 3 1 1 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 1 0 8 1 1 0 9 1 1 0 10 1 1 0 11 1 1 0 12 1 1 0 13 1 1 0 14 1 1 0 15 1 1 0 16 1 1 0 17 1 1 0 18 1 1 0 19 1 1 0 20 1 1 0 21 1 1 0 22 1 1 0 23 1 1 0 24 1 1 0 25 1 1 0 26 1 1 0 27 1 1 0 28 1 1 0 29 1 1 0 30 1 1 0 31 1 1 0 32 1 1 0 ...
output:
0.000000000000 0.017453292520 0.034906585040 0.052359877560 0.069813170080 0.087266462600 0.104719755120 0.122173047640 0.139626340160 0.157079632679 0.174532925199 0.191986217719 0.209439510239 0.226892802759 0.244346095279 0.261799387799 0.279252680319 0.296705972839 0.314159265359 0.331612557879 ...
result:
ok 100000 numbers
Test #5:
score: 0
Accepted
time: 2ms
memory: 3748kb
input:
1 1 1 0 0
output:
0.000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #6:
score: 0
Accepted
time: 103ms
memory: 3628kb
input:
100000 2 1 24 89 3 1 76 68 2 2 52 144 3 3 4 2 2 2 86 44 3 2 87 123 3 2 2 53 3 1 50 172 3 3 86 156 2 2 46 1 3 3 74 71 2 2 20 104 2 2 29 86 3 3 2 30 2 2 26 178 3 2 14 108 3 3 90 69 3 2 13 175 3 3 52 35 2 2 73 31 3 3 77 105 3 1 86 143 3 3 50 109 3 1 13 94 3 2 41 139 2 2 51 154 2 1 57 40 3 3 27 112 2 2 ...
output:
5.323254218583 22.410027595607 25.173876620134 2.827433388231 27.087509990952 47.012886069757 4.572762640225 17.101525659349 80.168864241398 12.915436464758 57.648225193373 12.864384636389 14.102260356114 5.969026041821 19.818865672108 13.736070861025 67.387162419501 18.233437656637 38.170350741116 ...
result:
ok 100000 numbers
Test #7:
score: 0
Accepted
time: 2ms
memory: 3620kb
input:
1 1 1 1 1
output:
0.087266462600
result:
ok found '0.0872665', expected '0.0872665', error '0.0000000'
Test #8:
score: 0
Accepted
time: 128ms
memory: 3636kb
input:
100000 71 6 33 34 98 20 79 171 88 16 59 8 45 21 36 79 88 61 44 149 55 47 72 86 81 8 85 122 68 2 35 71 98 91 79 49 73 19 68 148 69 66 81 22 99 94 87 130 65 53 43 53 97 89 84 1 93 88 77 6 83 46 2 51 83 69 46 95 91 55 17 137 93 84 1 54 61 45 74 15 77 65 0 21 84 71 6 32 87 81 37 76 91 55 32 154 73 34 76...
output:
3436.221684618956 20453.899714220959 11173.458244927538 3345.010777909732 27858.125443027413 16389.723780362991 11913.368920826426 2998.196402245939 56334.480958811532 11128.116724082295 27437.570679024497 77419.259170279996 13048.238567542287 50858.632603726963 44838.573134578042 2464.369997230953 ...
result:
ok 100000 numbers
Test #9:
score: 0
Accepted
time: 116ms
memory: 3628kb
input:
100000 10 1 40 160 6 6 27 16 10 10 7 41 4 1 38 161 7 6 66 143 6 4 26 127 8 4 47 99 4 4 49 121 5 2 68 122 8 8 27 178 10 8 73 125 6 2 20 175 10 1 34 13 7 4 66 102 10 10 14 179 9 7 64 120 7 5 47 169 10 8 68 90 8 2 37 3 5 5 10 164 4 2 26 62 7 5 43 40 1 1 35 103 10 7 71 102 6 1 90 63 6 4 49 44 6 3 84 123...
output:
87.584913357908 77.911497809027 120.427718387609 19.690923988661 291.658182925004 83.318489580253 145.851363237235 89.226195379334 67.671999442581 321.571228728412 558.426573154582 34.903934826530 72.029738229806 168.011900637173 411.827515292431 391.845507899691 196.280472187850 485.061905714264 64...
result:
ok 100000 numbers
Test #10:
score: 0
Accepted
time: 120ms
memory: 3612kb
input:
100000 8 8 89 18 10 1 17 44 6 1 43 5 11 10 84 74 11 11 64 172 10 7 85 51 7 6 71 176 9 7 51 99 5 3 12 54 6 5 26 32 3 2 21 23 10 10 59 151 9 9 81 45 7 4 2 37 11 6 3 172 11 10 65 98 11 10 78 173 7 2 9 104 10 9 46 77 8 3 24 100 11 9 77 41 10 10 55 30 11 6 37 75 9 7 25 56 10 9 14 7 9 9 12 179 11 9 6 130 ...
output:
417.762009757363 36.669367584401 36.861353802120 775.694132756360 917.192986614325 472.355908759745 322.464590122768 312.639212169689 21.886428820009 68.870692283696 10.768681484805 692.821232732176 521.661460128585 14.556045961633 127.726396981381 671.449407348259 913.466888314433 20.213846371293 3...
result:
ok 100000 numbers
Test #11:
score: 0
Accepted
time: 128ms
memory: 3628kb
input:
100000 7 3 55 160 4 3 14 72 9 7 4 52 9 9 31 71 12 1 87 116 9 7 10 154 12 10 20 100 6 5 61 69 12 12 55 130 12 11 7 163 4 3 43 178 11 11 42 155 12 1 20 1 5 3 72 151 7 2 74 136 10 10 66 76 11 11 84 176 8 6 59 110 12 2 54 47 12 12 38 28 12 12 38 105 12 12 60 173 12 4 48 76 2 1 71 31 3 1 21 123 12 7 83 2...
output:
123.848168841707 23.282692221604 62.343160881237 275.674755352504 258.992530853761 187.418244337320 343.731350761199 158.929681686604 891.558109336301 425.573601551489 65.047404023752 703.955421939029 59.009582009928 107.152855427087 115.790851181558 593.411945678072 1088.802599177088 271.7872108174...
result:
ok 100000 numbers
Test #12:
score: 0
Accepted
time: 119ms
memory: 3752kb
input:
100000 12 8 12 17 7 1 3 24 13 13 40 16 9 9 77 68 11 1 2 137 8 5 43 153 11 10 60 93 9 4 54 124 13 11 90 62 13 11 23 10 9 5 65 152 13 10 81 159 9 5 0 100 2 1 8 10 13 4 29 108 11 9 33 62 1 1 7 0 7 6 9 117 10 7 79 17 6 3 44 136 9 1 89 169 12 12 90 59 11 11 67 48 8 2 50 165 12 3 36 39 11 2 46 157 12 7 57...
output:
102.764986357426 3.769911184308 519.130732713193 531.557476987393 7.895855251233 201.659447813743 624.135520745836 197.885993911459 1035.713284718475 252.339703253340 297.248770789876 1051.611431187917 43.633231299858 1.431169986635 178.080101488160 318.033896298407 0.488692190558 101.498343168797 4...
result:
ok 100000 numbers
Test #13:
score: 0
Accepted
time: 112ms
memory: 3640kb
input:
100000 16 6 41 45 19 4 51 119 1 1 20 49 20 20 68 30 20 20 56 133 16 6 69 27 13 12 17 12 11 6 33 146 12 9 51 156 7 7 6 125 20 17 76 123 20 13 14 80 20 20 50 160 10 9 89 177 13 4 0 61 18 4 65 36 10 5 34 167 17 15 73 74 18 1 26 107 17 8 6 65 10 5 14 130 19 6 51 73 11 1 75 177 14 3 76 96 8 3 31 9 7 5 13...
output:
374.617470648063 509.228455427212 2.251474735073 2108.357736409150 2531.274337012178 599.834757325411 215.600522498860 270.926866137203 635.711065501703 129.606175914050 2456.987219221100 502.061412628689 2584.665518016392 815.152005832541 17.034413499465 559.133679168903 211.681588457093 1595.26584...
result:
ok 100000 numbers
Test #14:
score: 0
Accepted
time: 123ms
memory: 3612kb
input:
100000 21 19 6 6 17 6 48 147 16 10 56 89 18 18 89 19 19 18 79 85 15 7 12 18 20 18 57 117 17 16 36 117 9 6 12 81 20 19 4 76 19 18 7 97 21 2 79 160 21 19 5 4 21 19 25 119 14 10 54 129 21 17 49 21 21 13 48 179 14 14 31 80 18 17 51 1 8 4 37 1 13 9 90 118 14 14 47 64 16 11 3 74 20 15 30 42 19 19 38 133 1...
output:
205.355439789653 550.064867878034 816.046145062469 2120.575041173110 2368.254715323626 116.762526958421 2110.323177930085 1215.784171253939 98.017690792002 585.034365268499 715.994457120843 741.835073303215 164.828894558344 1464.155538987371 783.297607028993 1340.849197844644 1499.375882007590 697.8...
result:
ok 100000 numbers
Test #15:
score: 0
Accepted
time: 116ms
memory: 3608kb
input:
100000 14 12 55 44 19 19 55 175 18 18 25 53 18 12 61 16 22 19 85 30 21 17 53 122 22 22 80 110 20 17 46 87 19 11 64 165 5 1 20 110 19 6 46 176 22 22 45 164 22 18 77 35 22 4 69 53 17 2 34 93 22 17 33 179 16 12 79 106 17 17 64 87 22 16 60 76 12 4 43 109 18 10 51 174 11 8 60 26 19 17 5 46 14 12 75 101 2...
output:
759.497477297852 2516.027606494228 865.194616798629 998.398145310836 2682.832859703084 1972.151629880214 3638.749115892898 1537.931776979843 1382.218152879955 14.689817208969 614.867582302068 2986.650744477979 2348.165975633171 828.891768357147 220.728142886872 1783.948886141239 1349.166583182557 17...
result:
ok 100000 numbers
Test #16:
score: 0
Accepted
time: 128ms
memory: 3628kb
input:
100000 22 20 49 129 22 1 9 42 29 27 41 134 29 29 72 80 27 16 71 123 28 7 21 71 25 13 70 133 28 11 27 60 29 28 68 3 23 5 1 168 27 22 79 16 29 10 17 81 27 15 90 119 29 28 86 79 22 21 69 122 27 27 49 139 16 8 11 97 16 11 4 58 12 11 32 128 18 8 35 146 29 22 27 19 30 15 50 115 15 2 24 72 18 6 80 158 13 6...
output:
2446.922149155350 83.828163973288 4035.070122674870 5401.584595412211 2878.481412038130 509.705954752424 2207.415857830734 843.465267611300 3897.040967023019 91.368440291689 3445.681369164765 592.661454099714 3265.055309950067 5957.681401682644 3188.830921300577 4354.967682393698 219.088323702232 17...
result:
ok 100000 numbers
Test #17:
score: 0
Accepted
time: 124ms
memory: 3640kb
input:
100000 39 35 57 118 18 2 33 138 37 28 62 114 40 2 11 130 11 9 78 113 23 17 47 122 29 7 65 143 36 27 11 77 24 19 77 38 34 30 5 12 12 2 74 14 38 31 37 82 36 34 15 85 39 27 17 161 37 15 46 80 40 14 33 54 37 30 88 95 40 22 9 111 36 36 12 52 40 40 48 151 40 39 41 163 21 16 42 73 18 2 64 146 40 37 84 152 ...
output:
8021.612925242913 241.910091287406 6161.900464289473 349.647106948921 706.655863042591 1953.103910453777 1613.995982469011 1741.698967150181 2724.301882730469 545.938990023826 254.119939090374 4449.874007592223 2997.777523225460 3534.158747180425 2485.069602159606 1864.221080640183 8387.167443573259...
result:
ok 100000 numbers
Test #18:
score: 0
Accepted
time: 127ms
memory: 3624kb
input:
100000 9 8 74 2 47 41 64 61 42 1 75 10 33 29 33 75 43 1 76 103 48 12 73 90 50 50 35 160 50 48 13 179 49 46 77 169 30 18 74 55 44 43 77 164 15 2 31 91 49 43 31 120 49 36 39 131 43 8 23 142 33 31 25 74 25 6 58 129 28 20 31 95 8 7 1 148 37 10 52 156 11 5 54 52 49 26 33 2 20 17 13 33 38 23 89 34 50 7 60...
output:
375.490135274060 10439.809093851722 2420.509873128336 3314.851488435270 2570.010106911053 4812.919945299563 13536.165609610958 9417.110876737315 18693.856547754671 3286.734234185642 15787.461796313239 162.717444833826 8548.794250962402 8091.250708603430 1231.610429358239 3028.390598305441 1068.31698...
result:
ok 100000 numbers
Test #19:
score: 0
Accepted
time: 164ms
memory: 3752kb
input:
100000 985040437 963837006 74 178 562320397 456498961 21 57 616458849 43215539 12 112 967049313 962181597 55 20 404875500 323494205 16 148 822013814 350801410 65 117 493753261 325808227 72 151 883524417 55981080 1 165 756475575 306464991 75 65 982861539 971158777 53 2 977914232 494619050 34 80 92912...
output:
7823031139236863525.500000000000 587759779770854584.312500000000 95369829970997623.203125000000 3895961013788279691.000000000000 443752067877684912.125000000000 1832058841745101799.375000000000 1157411971581695252.875000000000 25211463877824919.832031250000 1585510323477645043.875000000000 356484642...
result:
ok 100000 numbers
Test #20:
score: 0
Accepted
time: 167ms
memory: 3644kb
input:
100000 915624482 436335283 31 93 966989692 899762255 14 172 971565321 859650888 86 78 840892426 595383046 16 116 992919354 525701445 9 98 924698821 417910701 18 49 923077550 641792877 68 62 918753914 850646822 29 137 935549247 897719522 87 46 937380829 805246200 55 11 434960395 174040501 0 56 902102...
output:
1298002666918420081.375000000000 3375253522633562132.250000000000 6039368287407980263.000000000000 1313133658442171531.125000000000 835838455087290147.875000000000 715665701891950373.250000000000 3352034067230078397.500000000000 3413794084111542658.250000000000 5750292420404997950.000000000000 30395...
result:
ok 100000 numbers