QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#754579#9558. The Devilucup-team3586#TL 525ms58592kbC++2314.4kb2024-11-16 15:21:312024-11-16 15:21:31

Judging History

你现在查看的是最新测评结果

  • [2024-11-16 15:21:31]
  • 评测
  • 测评结果:TL
  • 用时:525ms
  • 内存:58592kb
  • [2024-11-16 15:21:31]
  • 提交

answer

#include<bits/stdc++.h>
//ATCoder Lib
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
namespace atcoder {
 
namespace internal {
 
template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};
 
template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};
 
}  // namespace internal
 
template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    explicit mcf_graph(int n) : _n(n) {}
 
    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }
 
    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };
 
    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }
 
    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
 
        int m = int(_edges.size());
        std::vector<int> edge_idx(m);
 
        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();
 
        auto result = slope(g, s, t, flow_limit);
 
        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }
 
        return result;
    }
 
  private:
    int _n;
    std::vector<edge> _edges;
 
    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };
 
    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
 
        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();
 
            // que[0..heap_r) was heapified
            size_t heap_r = 0;
 
            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }
 
            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};
 
}
namespace atcoder {
 
template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    explicit mf_graph(int n) : _n(n), g(n) {}
 
    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        // printf("%d %d %d\n",from,to,cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }
 
    struct edge {
        int from, to;
        Cap cap, flow;
    };
 
    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }
 
    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
 
        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;
 
        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };
 
        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }
 
    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }
 
  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};
 
}
using namespace atcoder;
using namespace std;
inline int read(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
   return s*w;
}
string curtoken,a[1<<20];
int len;
bool readtoken()
{
	curtoken="";
	char c=getchar();
	while(!islower(c)&&!isupper(c)) c=getchar();
	while(1)
	{
		if(islower(c)||isupper(c)) curtoken+=c;
		else if(c==' ')
		{
			a[++len]=curtoken;
			return 1;
		}
		else
		{
			a[++len]=curtoken;
			return 0;
		}c=getchar();
	}
}
int n=read(),m=n+2;
int sz;
mcf_graph<int,int> G(1e6);
map<string,int> mp;
int S=n+1,T=n+2;
string arr[100003];
int Hash(string &s)
{
	if(!mp.count(s))
	{
		mp[s]=++m;
		arr[m]=s;
		G.add_edge(m,T,1,s.size());
	}
	return mp[s];
}
struct node{string cur;int x;bool first;
bool operator<(const node&t)const{return cur.size()>t.cur.size();}};
string ans[1003];
signed main()
{
	for(int i=1; i<=n; ++i)
		G.add_edge(S,i,1,0);
	// puts("QAQ");
	for(int id=1; id<=n; ++id)
	{
		sz=0;
		len=0;
		while(readtoken());
		priority_queue<node> q;
		q.push((node){"",1,1});
		while(!q.empty()&&sz<n)
		{
			auto i=q.top();
			q.pop();
			if(i.x>len)
			{
				++sz;
				G.add_edge(id,Hash(i.cur),1,0);
				// st.insert(cur);
				continue;
			}
			if(i.first)
			{
				char Last=i.cur.back();
				if(Last==a[i.x][0]) continue;
			}
			bool first=0;
			for(char ii:a[i.x])
			{
				i.cur.push_back(ii);
				q.push((node){i.cur,i.x+1,first});
				// dfs(x+1,first);
				first=1;
				// if(sz>=n) return ; 
			}
			// for(auto i:a[x]) cur.pop_back();
		}
	}
	// printf("%d\n",m);
	auto [flow,cost]=G.flow(S,T);
	// printf("%d\n",cost);
	// printf("%d\n",flow);
	if(flow!=n) puts("no solution"),exit(0);
	auto it=G.edges();
	for(auto i:it)
		if(i.to>n+2&&i.flow)
			ans[i.from]=arr[i.to];
	for(int i=1; i<=n; ++i)
		cout<<ans[i]<<endl;
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 7ms
memory: 54672kb

input:

5
automated teller machine
active teller machine
active trouble maker
always telling misinformation
American Teller Machinery

output:

atma
actm
atrm
atm
ATM

result:

ok len=18

Test #2:

score: 0
Accepted
time: 17ms
memory: 54704kb

input:

5
Forest Conservation Committee Forum
Fuming Corruption Collusion Federation
Fulsome Cash Concealment Foundation
Funky Crony Capitalism Facilitator
Funny Cocky Cocky Funny

output:

FCCoF
FuCCF
FCaCF
FCrCF
FCCF

result:

ok len=24

Test #3:

score: 0
Accepted
time: 14ms
memory: 54660kb

input:

3
A AA
AA A
A A A

output:

no solution

result:

ok len=-1

Test #4:

score: 0
Accepted
time: 9ms
memory: 54764kb

input:

2
QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnmertyuiop
Q W E R T Y U I O P A S D F G H J K L Z X C V B N M q w e r t y u i o p a s d f g h j k l z x c v b n m j k l z x c v b n m

output:

Q
QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnmjklzxcvbnm

result:

ok len=63

Test #5:

score: 0
Accepted
time: 16ms
memory: 54696kb

input:

10
aaa aaa aaa aaa aaa aaa
aab aaa aaa aaa aaa aaa
aaa aab aaa aaa aaa aaa
aab aab aaa aaa aaa aaa
a a a a a a
ab ab a a a a a a
ab ab b a a a a a a
aw a a a a a
az az a a a a
az a a a a a

output:

aaaaaaaa
aabaaaaa
aaabaaaa
aaaaaaa
aaaaaa
abaaaaaaa
aabaaaaaa
awaaaaa
aazaaaa
azaaaaa

result:

ok len=76

Test #6:

score: 0
Accepted
time: 525ms
memory: 58592kb

input:

128
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...

output:

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...

result:

ok len=24512

Test #7:

score: -100
Time Limit Exceeded

input:

128
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaar aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

output:


result: