QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#753884 | #9553. The Hermit | ucup-team055# | AC ✓ | 26ms | 5700kb | C++20 | 21.5kb | 2024-11-16 13:48:20 | 2024-11-16 13:48:21 |
Judging History
你现在查看的是测评时间为 2024-11-16 13:48:21 的历史记录
- [2024-11-18 19:43:48]
- hack成功,自动添加数据
- (/hack/1196)
- [2024-11-16 13:48:20]
- 提交
answer
#line 1 "f.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ld=long double;
const ll ILL=2167167167167167167;
const int INF=2100000000;
#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)
#define all(p) p.begin(),p.end()
template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;
template<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> bool chmin(T &a,T b){if(a>b){a=b;return 1;}else return 0;}
template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}
template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}
template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}
bool yneos(bool a,bool upp=0){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}
template<class T> void vec_out(vector<T> &p,int ty=0){
if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}
else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}
template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}
template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}
template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}
int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint998244353;
#line 2 "/Users/Shared/po167_library/math/Binomial.hpp"
#line 5 "/Users/Shared/po167_library/math/Binomial.hpp"
namespace po167{
template<class T>
struct Binomial{
std::vector<T> fact_vec, fact_inv_vec;
void extend(int m = -1){
int n = fact_vec.size();
if (m == -1) m = n * 2;
if (n >= m) return;
fact_vec.resize(m);
fact_inv_vec.resize(m);
for (int i = n; i < m; i++){
fact_vec[i] = fact_vec[i - 1] * T(i);
}
fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1];
for (int i = m - 1; i > n; i--){
fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i);
}
}
Binomial(int MAX = 0){
fact_vec.resize(1, T(1));
fact_inv_vec.resize(1, T(1));
extend(MAX + 1);
}
T fact(int i){
if (i < 0) return 0;
while (int(fact_vec.size()) <= i) extend();
return fact_vec[i];
}
T invfact(int i){
if (i < 0) return 0;
while (int(fact_inv_vec.size()) <= i) extend();
return fact_inv_vec[i];
}
T C(int a, int b){
if (a < b || b < 0) return 0;
return fact(a) * invfact(b) * invfact(a - b);
}
T invC(int a, int b){
if (a < b || b < 0) return 0;
return fact(b) * fact(a - b) *invfact(a);
}
T P(int a, int b){
if (a < b || b < 0) return 0;
return fact(a) * invfact(a - b);
}
T inv(int a){
if (a < 0) return inv(-a) * T(-1);
if (a == 0) return 1;
return fact(a - 1) * invfact(a);
}
T Catalan(int n){
if (n < 0) return 0;
return fact(2 * n) * invfact(n + 1) * invfact(n);
}
T narayana(int n, int k){
if (n <= 0 || n < k || k < 1) return 0;
return C(n, k) * C(n, k - 1) * inv(n);
}
T Catalan_pow(int n,int d){
if (n < 0 || d < 0) return 0;
if (d == 0){
if (n == 0) return 1;
return 0;
}
return T(d) * inv(d + n) * C(2 * n + d - 1, n);
}
// retrun [x^a] 1/(1-x)^b
T ruiseki(int a,int b){
if (a < 0 || b < 0) return 0;
if (a == 0){
return 1;
}
return C(a + b - 1, b - 1);
}
// (a, b) -> (c, d)
// always x + e >= y
T mirror(int a, int b, int c, int d, int e = 0){
if (a + e < b || c + e < d) return 0;
if (a > c || b > d) return 0;
a += e;
c += e;
return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1);
}
// return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i)
// return C(a + b + 2, a + 1) - 1;
T gird_sum(int a, int b){
if (a < 0 || b < 0) return 0;
return C(a + b + 2, a + 1) - 1;
}
// return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i)
// AGC 018 E
T gird_sum_2(int a, int b, int c, int d){
if (a >= b || c >= d) return 0;
a--, b--, c--, d--;
return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d);
}
};
}
#line 28 "f.cpp"
void solve();
// CYAN / FREDERIC
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
// cin >> t;
rep(i, 0, t) solve();
}
void solve(){
int N, M;
cin >> N >> M;
po167::Binomial<mint> table;
mint ans = table.C(N, M);
ans *= M;
vector<mint> dp(N + 1, 1);
vector<int> divN(N + 1);
rep(i, 1, N + 1) divN[i] = N / i;
int low = 1;
for (int t = 0; low <= N; low *= 2, t++){
vector<mint> n_dp(N + 1);
rep(i, 1, N + 1){
for (int j = i * 2; j <= N; j += i){
n_dp[j] += dp[i];
}
ans -= dp[i] * table.C(divN[i] - 1, M - t - 1);
}
swap(n_dp, dp);
}
cout << ans.val() << "\n";
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3568kb
input:
4 3
output:
7
result:
ok 1 number(s): "7"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3640kb
input:
11 4
output:
1187
result:
ok 1 number(s): "1187"
Test #3:
score: 0
Accepted
time: 24ms
memory: 5696kb
input:
100000 99999
output:
17356471
result:
ok 1 number(s): "17356471"
Test #4:
score: 0
Accepted
time: 2ms
memory: 3988kb
input:
11451 1919
output:
845616153
result:
ok 1 number(s): "845616153"
Test #5:
score: 0
Accepted
time: 24ms
memory: 5524kb
input:
99998 12345
output:
936396560
result:
ok 1 number(s): "936396560"
Test #6:
score: 0
Accepted
time: 20ms
memory: 5512kb
input:
100000 1
output:
0
result:
ok 1 number(s): "0"
Test #7:
score: 0
Accepted
time: 22ms
memory: 5520kb
input:
100000 15
output:
190067060
result:
ok 1 number(s): "190067060"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3564kb
input:
10 3
output:
299
result:
ok 1 number(s): "299"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
10 4
output:
743
result:
ok 1 number(s): "743"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3512kb
input:
10 5
output:
1129
result:
ok 1 number(s): "1129"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3516kb
input:
15 6
output:
28006
result:
ok 1 number(s): "28006"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
15 7
output:
42035
result:
ok 1 number(s): "42035"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
123 45
output:
214851327
result:
ok 1 number(s): "214851327"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3592kb
input:
998 244
output:
964050559
result:
ok 1 number(s): "964050559"
Test #15:
score: 0
Accepted
time: 1ms
memory: 3664kb
input:
1919 810
output:
379720338
result:
ok 1 number(s): "379720338"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3656kb
input:
1048 576
output:
216543264
result:
ok 1 number(s): "216543264"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
999 777
output:
635548531
result:
ok 1 number(s): "635548531"
Test #18:
score: 0
Accepted
time: 24ms
memory: 5576kb
input:
99999 77777
output:
448144614
result:
ok 1 number(s): "448144614"
Test #19:
score: 0
Accepted
time: 2ms
memory: 4280kb
input:
34527 6545
output:
748108997
result:
ok 1 number(s): "748108997"
Test #20:
score: 0
Accepted
time: 2ms
memory: 3724kb
input:
12345 12
output:
777496209
result:
ok 1 number(s): "777496209"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
1 1
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 24ms
memory: 5696kb
input:
100000 10101
output:
855985819
result:
ok 1 number(s): "855985819"
Test #23:
score: 0
Accepted
time: 21ms
memory: 5620kb
input:
100000 91919
output:
92446940
result:
ok 1 number(s): "92446940"
Test #24:
score: 0
Accepted
time: 20ms
memory: 5608kb
input:
100000 77979
output:
106899398
result:
ok 1 number(s): "106899398"
Test #25:
score: 0
Accepted
time: 0ms
memory: 3696kb
input:
10000 11
output:
326411649
result:
ok 1 number(s): "326411649"
Test #26:
score: 0
Accepted
time: 21ms
memory: 5696kb
input:
100000 2
output:
15322970
result:
ok 1 number(s): "15322970"
Test #27:
score: 0
Accepted
time: 21ms
memory: 5540kb
input:
100000 3
output:
93355797
result:
ok 1 number(s): "93355797"
Test #28:
score: 0
Accepted
time: 24ms
memory: 5548kb
input:
100000 99998
output:
331850772
result:
ok 1 number(s): "331850772"
Test #29:
score: 0
Accepted
time: 24ms
memory: 5620kb
input:
100000 99996
output:
885066226
result:
ok 1 number(s): "885066226"
Test #30:
score: 0
Accepted
time: 2ms
memory: 3956kb
input:
13115 2964
output:
0
result:
ok 1 number(s): "0"
Test #31:
score: 0
Accepted
time: 26ms
memory: 5612kb
input:
100000 17
output:
425792977
result:
ok 1 number(s): "425792977"
Test #32:
score: 0
Accepted
time: 25ms
memory: 5624kb
input:
99991 16
output:
667323936
result:
ok 1 number(s): "667323936"
Test #33:
score: 0
Accepted
time: 25ms
memory: 5564kb
input:
99991 17
output:
627396741
result:
ok 1 number(s): "627396741"
Test #34:
score: 0
Accepted
time: 25ms
memory: 5560kb
input:
99991 18
output:
874158501
result:
ok 1 number(s): "874158501"
Test #35:
score: 0
Accepted
time: 20ms
memory: 5576kb
input:
100000 100000
output:
99999
result:
ok 1 number(s): "99999"
Test #36:
score: 0
Accepted
time: 18ms
memory: 5512kb
input:
94229 94229
output:
94228
result:
ok 1 number(s): "94228"
Test #37:
score: 0
Accepted
time: 22ms
memory: 5696kb
input:
94229 94223
output:
476599876
result:
ok 1 number(s): "476599876"
Test #38:
score: 0
Accepted
time: 0ms
memory: 3592kb
input:
2 1
output:
0
result:
ok 1 number(s): "0"
Test #39:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
2 2
output:
0
result:
ok 1 number(s): "0"
Test #40:
score: 0
Accepted
time: 0ms
memory: 3556kb
input:
3 1
output:
0
result:
ok 1 number(s): "0"
Test #41:
score: 0
Accepted
time: 0ms
memory: 3868kb
input:
3 2
output:
2
result:
ok 1 number(s): "2"
Test #42:
score: 0
Accepted
time: 0ms
memory: 3564kb
input:
3 3
output:
2
result:
ok 1 number(s): "2"
Test #43:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
9 2
output:
44
result:
ok 1 number(s): "44"
Test #44:
score: 0
Accepted
time: 0ms
memory: 3860kb
input:
9 3
output:
206
result:
ok 1 number(s): "206"
Test #45:
score: 0
Accepted
time: 0ms
memory: 3596kb
input:
9 4
output:
441
result:
ok 1 number(s): "441"
Test #46:
score: 0
Accepted
time: 0ms
memory: 3820kb
input:
9 7
output:
224
result:
ok 1 number(s): "224"
Test #47:
score: 0
Accepted
time: 16ms
memory: 5428kb
input:
70839 22229
output:
0
result:
ok 1 number(s): "0"
Test #48:
score: 0
Accepted
time: 16ms
memory: 4988kb
input:
65536 17
output:
698801006
result:
ok 1 number(s): "698801006"
Test #49:
score: 0
Accepted
time: 14ms
memory: 4752kb
input:
65535 17
output:
433312902
result:
ok 1 number(s): "433312902"
Test #50:
score: 0
Accepted
time: 24ms
memory: 5588kb
input:
99856 317
output:
932131332
result:
ok 1 number(s): "932131332"
Test #51:
score: 0
Accepted
time: 20ms
memory: 5696kb
input:
99856 318
output:
398997854
result:
ok 1 number(s): "398997854"
Test #52:
score: 0
Accepted
time: 25ms
memory: 5700kb
input:
99856 2
output:
984791559
result:
ok 1 number(s): "984791559"
Test #53:
score: 0
Accepted
time: 24ms
memory: 5700kb
input:
100000 50000
output:
309108799
result:
ok 1 number(s): "309108799"
Extra Test:
score: 0
Extra Test Passed