QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#753812 | #9553. The Hermit | ucup-team133# | AC ✓ | 96ms | 5080kb | C++23 | 19.8kb | 2024-11-16 13:40:20 | 2024-11-18 19:45:54 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
template <typename T> struct Binomial {
Binomial(int MAX = 0) : n(1), facs(1, T(1)), finvs(1, T(1)), invs(1, T(1)) {
assert(T::mod() != 0);
if (MAX > 0) extend(MAX + 1);
}
T fac(int i) {
assert(i >= 0);
while (n <= i) extend();
return facs[i];
}
T finv(int i) {
assert(i >= 0);
while (n <= i) extend();
return finvs[i];
}
T inv(int i) {
assert(i >= 0);
while (n <= i) extend();
return invs[i];
}
T P(int n, int r) {
if (n < r or r < 0) return 0;
return fac(n) * finv(n - r);
}
T C(int n, int r) {
if (n < r or r < 0) return 0;
return fac(n) * finv(n - r) * finv(r);
}
T H(int n, int r) {
if (n < 0 or r < 0) return 0;
return r == 0 ? 1 : C(n + r - 1, r);
}
T negative_binom(int n, int k) { return H(k, n); }
T C_naive(int n, int r) {
if (n < r or r < 0) return 0;
T res = 1;
r = std::min(r, n - r);
for (int i = 1; i <= r; i++) res *= inv(i) * (n--);
return res;
}
T catalan(int n) {
if (n < 0) return 0;
return fac(2 * n) * finv(n + 1) * finv(n);
}
T catalan_pow(int n, int k) {
if (n < 0 or k < 0) return 0;
if (k == 0) return n == 0 ? 1 : 0;
return inv(n + k) * k * C(2 * n + k - 1, n);
}
T calatan1(int n, int m) { return C(n + m, m) - C(n + m, m - 1); }
T catalan2(int n, int m, int k) { return n - m <= -k ? 0 : C(n + m, m) - C(n + m, m - k); }
T narayana(int n, int k) {
if (n < k or k <= 0) return 0;
return C(n, k) * C(n, k - 1) * inv(n);
}
T grid_sum(int x, int y) {
if (x < 0 or y < 0) return 0;
return C(x + y + 2, x + 1) - 1;
}
T grid_sum2(int xl, int xr, int yl, int yr) {
if (xl >= xr or yl >= yr) return 0;
xl--, xr--, yl--, yr--;
return grid_sum(xr, yr) - grid_sum(xl, yr) - grid_sum(xr, yl) + grid_sum(xl, yl);
}
private:
int n;
std::vector<T> facs, finvs, invs;
inline void extend(int m = -1) {
if (m == -1) m = n * 2;
m = std::min(m, T::mod());
if (n >= m) return;
facs.resize(m);
finvs.resize(m);
invs.resize(m);
for (int i = n; i < m; i++) facs[i] = facs[i - 1] * i;
finvs[m - 1] = T(1) / facs[m - 1];
invs[m - 1] = finvs[m - 1] * facs[m - 2];
for (int i = m - 2; i >= n; i--) {
finvs[i] = finvs[i + 1] * (i + 1);
invs[i] = finvs[i] * facs[i - 1];
}
n = m;
}
};
using namespace std;
using ll = long long;
using mint = atcoder::modint998244353;
map<pair<int, int>, mint> mp;
Binomial<mint> BINOM;
mint solve(int m, int n) { // 2 以上 m 以下から n 枚選ぶ
if (n <= 1) return 0;
if (mp.count({m, n})) return mp[{m, n}];
mint res = 0;
for (int i = 2; i <= m; i++) {
mint sum = 0;
sum += (BINOM.C(m - i, n - 1) - BINOM.C(m / i - 1, n - 1)) * n; // i と i の倍数以外を両方含む
sum += solve(m / i, n - 1); // i を含み、それ以外は全て i の倍数
res += sum;
}
return mp[{m, n}] = res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int m, n;
cin >> m >> n;
mint ans = solve(m, n) + solve(m, n - 1);
cout << ans.val() << "\n";
return 0;
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3560kb
input:
4 3
output:
7
result:
ok 1 number(s): "7"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
11 4
output:
1187
result:
ok 1 number(s): "1187"
Test #3:
score: 0
Accepted
time: 93ms
memory: 4928kb
input:
100000 99999
output:
17356471
result:
ok 1 number(s): "17356471"
Test #4:
score: 0
Accepted
time: 8ms
memory: 3824kb
input:
11451 1919
output:
845616153
result:
ok 1 number(s): "845616153"
Test #5:
score: 0
Accepted
time: 89ms
memory: 5016kb
input:
99998 12345
output:
936396560
result:
ok 1 number(s): "936396560"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
100000 1
output:
0
result:
ok 1 number(s): "0"
Test #7:
score: 0
Accepted
time: 96ms
memory: 5076kb
input:
100000 15
output:
190067060
result:
ok 1 number(s): "190067060"
Test #8:
score: 0
Accepted
time: 1ms
memory: 3560kb
input:
10 3
output:
299
result:
ok 1 number(s): "299"
Test #9:
score: 0
Accepted
time: 1ms
memory: 3624kb
input:
10 4
output:
743
result:
ok 1 number(s): "743"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
10 5
output:
1129
result:
ok 1 number(s): "1129"
Test #11:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
15 6
output:
28006
result:
ok 1 number(s): "28006"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3580kb
input:
15 7
output:
42035
result:
ok 1 number(s): "42035"
Test #13:
score: 0
Accepted
time: 1ms
memory: 3576kb
input:
123 45
output:
214851327
result:
ok 1 number(s): "214851327"
Test #14:
score: 0
Accepted
time: 1ms
memory: 3648kb
input:
998 244
output:
964050559
result:
ok 1 number(s): "964050559"
Test #15:
score: 0
Accepted
time: 2ms
memory: 3692kb
input:
1919 810
output:
379720338
result:
ok 1 number(s): "379720338"
Test #16:
score: 0
Accepted
time: 1ms
memory: 3560kb
input:
1048 576
output:
216543264
result:
ok 1 number(s): "216543264"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3552kb
input:
999 777
output:
635548531
result:
ok 1 number(s): "635548531"
Test #18:
score: 0
Accepted
time: 89ms
memory: 5060kb
input:
99999 77777
output:
448144614
result:
ok 1 number(s): "448144614"
Test #19:
score: 0
Accepted
time: 27ms
memory: 4172kb
input:
34527 6545
output:
748108997
result:
ok 1 number(s): "748108997"
Test #20:
score: 0
Accepted
time: 9ms
memory: 3880kb
input:
12345 12
output:
777496209
result:
ok 1 number(s): "777496209"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3560kb
input:
1 1
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 91ms
memory: 4924kb
input:
100000 10101
output:
855985819
result:
ok 1 number(s): "855985819"
Test #23:
score: 0
Accepted
time: 88ms
memory: 4916kb
input:
100000 91919
output:
92446940
result:
ok 1 number(s): "92446940"
Test #24:
score: 0
Accepted
time: 88ms
memory: 4976kb
input:
100000 77979
output:
106899398
result:
ok 1 number(s): "106899398"
Test #25:
score: 0
Accepted
time: 7ms
memory: 3884kb
input:
10000 11
output:
326411649
result:
ok 1 number(s): "326411649"
Test #26:
score: 0
Accepted
time: 4ms
memory: 4932kb
input:
100000 2
output:
15322970
result:
ok 1 number(s): "15322970"
Test #27:
score: 0
Accepted
time: 13ms
memory: 5060kb
input:
100000 3
output:
93355797
result:
ok 1 number(s): "93355797"
Test #28:
score: 0
Accepted
time: 88ms
memory: 4924kb
input:
100000 99998
output:
331850772
result:
ok 1 number(s): "331850772"
Test #29:
score: 0
Accepted
time: 89ms
memory: 4996kb
input:
100000 99996
output:
885066226
result:
ok 1 number(s): "885066226"
Test #30:
score: 0
Accepted
time: 9ms
memory: 3904kb
input:
13115 2964
output:
0
result:
ok 1 number(s): "0"
Test #31:
score: 0
Accepted
time: 92ms
memory: 5076kb
input:
100000 17
output:
425792977
result:
ok 1 number(s): "425792977"
Test #32:
score: 0
Accepted
time: 87ms
memory: 4996kb
input:
99991 16
output:
667323936
result:
ok 1 number(s): "667323936"
Test #33:
score: 0
Accepted
time: 93ms
memory: 5060kb
input:
99991 17
output:
627396741
result:
ok 1 number(s): "627396741"
Test #34:
score: 0
Accepted
time: 91ms
memory: 4960kb
input:
99991 18
output:
874158501
result:
ok 1 number(s): "874158501"
Test #35:
score: 0
Accepted
time: 88ms
memory: 4920kb
input:
100000 100000
output:
99999
result:
ok 1 number(s): "99999"
Test #36:
score: 0
Accepted
time: 84ms
memory: 4996kb
input:
94229 94229
output:
94228
result:
ok 1 number(s): "94228"
Test #37:
score: 0
Accepted
time: 84ms
memory: 5080kb
input:
94229 94223
output:
476599876
result:
ok 1 number(s): "476599876"
Test #38:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
2 1
output:
0
result:
ok 1 number(s): "0"
Test #39:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
2 2
output:
0
result:
ok 1 number(s): "0"
Test #40:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
3 1
output:
0
result:
ok 1 number(s): "0"
Test #41:
score: 0
Accepted
time: 0ms
memory: 3624kb
input:
3 2
output:
2
result:
ok 1 number(s): "2"
Test #42:
score: 0
Accepted
time: 1ms
memory: 3620kb
input:
3 3
output:
2
result:
ok 1 number(s): "2"
Test #43:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
9 2
output:
44
result:
ok 1 number(s): "44"
Test #44:
score: 0
Accepted
time: 1ms
memory: 3828kb
input:
9 3
output:
206
result:
ok 1 number(s): "206"
Test #45:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
9 4
output:
441
result:
ok 1 number(s): "441"
Test #46:
score: 0
Accepted
time: 0ms
memory: 3564kb
input:
9 7
output:
224
result:
ok 1 number(s): "224"
Test #47:
score: 0
Accepted
time: 56ms
memory: 5080kb
input:
70839 22229
output:
0
result:
ok 1 number(s): "0"
Test #48:
score: 0
Accepted
time: 50ms
memory: 4148kb
input:
65536 17
output:
698801006
result:
ok 1 number(s): "698801006"
Test #49:
score: 0
Accepted
time: 56ms
memory: 4228kb
input:
65535 17
output:
433312902
result:
ok 1 number(s): "433312902"
Test #50:
score: 0
Accepted
time: 94ms
memory: 5060kb
input:
99856 317
output:
932131332
result:
ok 1 number(s): "932131332"
Test #51:
score: 0
Accepted
time: 85ms
memory: 5004kb
input:
99856 318
output:
398997854
result:
ok 1 number(s): "398997854"
Test #52:
score: 0
Accepted
time: 4ms
memory: 4908kb
input:
99856 2
output:
984791559
result:
ok 1 number(s): "984791559"
Test #53:
score: 0
Accepted
time: 85ms
memory: 4960kb
input:
100000 50000
output:
309108799
result:
ok 1 number(s): "309108799"
Extra Test:
score: 0
Extra Test Passed