QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#752463 | #1196. Fun Region | Jose_17 | WA | 194ms | 4840kb | C++20 | 6.8kb | 2024-11-16 05:04:09 | 2024-11-16 05:04:11 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
// Holi c:
#define ll long long int
#define fi first
#define se second
#define pb push_back
#define all(v) v.begin(), v.end()
const int Inf = 1e9;
const ll mod = 1e9+7;
const ll INF = 4e18;
using ld = long double;
const ld eps = 1e-6, inf = numeric_limits<ld>::max(), pi = acos(-1);
bool geq(ld a, ld b){return a-b >= -eps;}
bool leq(ld a, ld b){return b-a >= -eps;}
bool ge(ld a, ld b){return a-b > eps;}
bool le(ld a, ld b){return b-a > eps;}
bool eq(ld a, ld b){return abs(a-b) <= eps;}
bool neq(ld a, ld b){return abs(a-b) > eps;}
struct point{
ld x, y;
point(): x(0), y(0){}
point(ld x, ld y): x(x), y(y){}
point operator+(const point & p) const{return point(x + p.x, y + p.y);}
point operator-(const point & p) const{return point(x - p.x, y - p.y);}
point operator*(const ld & k) const{return point(x * k, y * k);}
point operator/(const ld & k) const{return point(x / k, y / k);}
point operator+=(const point & p){*this = *this + p; return *this;}
point operator-=(const point & p){*this = *this - p; return *this;}
point operator*=(const ld & p){*this = *this * p; return *this;}
point operator/=(const ld & p){*this = *this / p; return *this;}
point rotate(const ld & a) const{return point(x*cos(a) - y*sin(a), x*sin(a) + y*cos(a));}
point perp() const{return point(-y, x);}
ld ang() const{
ld a = atan2l(y, x); a += le(a, 0) ? 2*pi : 0; return a;
}
ld dot(const point & p) const{return x * p.x + y * p.y;}
ld cross(const point & p) const{return x * p.y - y * p.x;}
ld norm() const{return x * x + y * y;}
ld length() const{return sqrtl(x * x + y * y);}
point unit() const{return (*this) / length();}
bool operator==(const point & p) const{return eq(x, p.x) && eq(y, p.y);}
bool operator!=(const point & p) const{return !(*this == p);}
bool operator<(const point & p) const{return le(x, p.x) || (eq(x, p.x) && le(y, p.y));}
bool operator>(const point & p) const{return ge(x, p.x) || (eq(x, p.x) && ge(y, p.y));}
bool half(const point & p) const{return le(p.cross(*this), 0) || (eq(p.cross(*this), 0) && le(p.dot(*this), 0));}
};
istream &operator>>(istream &is, point & p){return is >> p.x >> p.y;}
ostream &operator<<(ostream &os, const point & p){return os << "(" << p.x << ", " << p.y << ")";}
int sgn(ld x){
if(ge(x, 0)) return 1;
if(le(x, 0)) return -1;
return 0;
}
point intersectLines(const point & a1, const point & v1, const point & a2, const point & v2){
//lines a1+tv1, a2+tv2
//assuming that they intersect
ld det = v1.cross(v2);
return a1 + v1 * ((a2 - a1).cross(v2) / det);
}
int intersectLineSegmentInfo(const point & a, const point & v, const point & c, const point & d){
//line a+tv, segment cd
point v2 = d - c;
ld det = v.cross(v2);
if(eq(det, 0)){
if(eq((c - a).cross(v), 0)){
return -1; //infinity points
}else{
return 0; //no point
}
}else{
return sgn(v.cross(c - a)) != sgn(v.cross(d - a)); //1: single point, 0: no point
}
}
vector<point> cutPolygon(const vector<point> & P, const point & a, const point & v){
//returns the part of the convex polygon P on the left side of line a+tv
int n = P.size();
vector<point> lhs;
for(int i = 0; i < n; ++i){
if(geq(v.cross(P[i] - a), 0)){
lhs.push_back(P[i]);
}
if(intersectLineSegmentInfo(a, v, P[i], P[(i+1)%n]) == 1){
point p = intersectLines(a, v, P[i], P[(i+1)%n] - P[i]);
if(p != P[i] && p != P[(i+1)%n]){
lhs.push_back(p);
}
}
}
return lhs;
}
vector<point> convexHull(vector<point> P){
sort(P.begin(), P.end());
vector<point> L, U;
for(int i = 0; i < P.size(); i++){
while(L.size() >= 2 && leq((L[L.size() - 2] - P[i]).cross(L[L.size() - 1] - P[i]), 0)){
L.pop_back();
}
L.push_back(P[i]);
}
for(int i = P.size() - 1; i >= 0; i--){
while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
U.pop_back();
}
U.push_back(P[i]);
}
L.pop_back();
U.pop_back();
L.insert(L.end(), U.begin(), U.end());
return L;
}
ld area(vector<point> & P){
int n = P.size();
ld ans = 0;
for(int i = 0; i < n; i++){
ans += P[i].cross(P[(i + 1) % n]);
}
return abs(ans / 2);
}
pair<vector<vector<int>>, vector<point>> precFunPolygon(vector<point> P){
int n = P.size();
vector<point> prov;
vector<pair<point, point>> Lprov;
for(int i = 0; i < n; i++){
if(geq((P[(i + 1) % n] - P[i]).cross(P[(i + 2) % n] - P[i]), 0)){
prov.pb(P[(i + 1) % n]); prov.pb(P[(i + 2) % n]);
Lprov.pb({P[(i + 1) % n], P[(i + 2) % n]});
}else{
point at(INF, INF), seg;
for(int j = 0; j < n; j++){
if(j == i || j == (i + 1) % n || (j + 1) % n == i || (j + 1) % n == (i + 1) % n) continue;
auto u = intersectLineSegmentInfo(P[i], P[(i + 1) % n] - P[i], P[j], P[(j + 1) % n]);
if(u == 1){
auto v = intersectLines(P[i], P[(i + 1) % n] - P[i], P[j], P[(j + 1) % n] - P[j]);
if(le((P[i] - v).length(), (P[(i + 1) % n] - v).length())) continue;
if(v == P[(j + 1) % n]) continue;
if(le((P[(i + 1) % n] - v).length(), (P[(i + 1) % n] - at).length())){
if(ge((v - P[(i + 1) % n]).cross(P[j] - P[(i + 1) % n]), 0)) at = v, seg = P[j];
if(ge((v - P[(i + 1) % n]).cross(P[(j + 1) % n] - P[(i + 1) % n]), 0)) at = v, seg = P[(j + 1) % n];
}
}
}
prov.pb(P[(i + 1) % n]); prov.pb(at); prov.pb(seg);
Lprov.pb({P[(i + 1) % n], at}); Lprov.pb({at, seg});
}
}
sort(all(prov));
prov.erase(unique(all(prov)), prov.end());
int k = prov.size();
vector<vector<int>> L(k);
for(int i = 0; i < Lprov.size(); i++){
auto it = lower_bound(all(prov), Lprov[i].fi) - prov.begin(), at = lower_bound(all(prov), Lprov[i].se) - prov.begin();
L[it].pb(at);
}
return {L, prov};
}
vector<point> funPolygon(vector<vector<int>> L, vector<point> P, point p0){
int n = P.size();
int ini = lower_bound(all(P), p0) - P.begin();
vector<int> res;
vector<point> ans;
vector<bool> fls(n, false);
stack<int> q;
q.push(ini); res.pb(ini);
while(q.size()){
int v = q.top();
res.pb(v);
q.pop();
if(fls[v]){
bool fl = false;
for(int i = 0; i < res.size(); i++){
if(res[i] == v) fl = true;
if(fl) ans.pb(P[res[i]]);
}
break;
}
fls[v] = true;
int u = L[v][0];
q.push(u);
}
ans = convexHull(ans);
return ans;
}
int main(){
ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n; cin>>n;
vector<point> P(n);
for(int i = 0; i < n; i++){
int a, b; cin>>a>>b;
P[i] = point(a, b);
}
auto u = precFunPolygon(P);
vector<vector<point>> Ps;
for(int i = 0; i < n; i++){
Ps.pb(funPolygon(u.fi, u.se, P[i]));
}
sort(all(Ps));
Ps.erase(unique(all(Ps)), Ps.end());
//for(auto e : Ps[0]) cout<<e<<" "; cout<<'\n';
auto ans = area(Ps[0]);
if(Ps.size() > 1) ans = 0;
cout<<setprecision(25)<<ans;
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 4000kb
input:
4 10 0 20 10 10 30 0 10
output:
300
result:
ok found '300.0000000', expected '300.0000000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
10 145 269 299 271 343 193 183 139 408 181 356 324 176 327 147 404 334 434 102 424
output:
12658.31301913107455803242
result:
ok found '12658.3130191', expected '12658.3130191', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3836kb
input:
6 144 401 297 322 114 282 372 178 197 271 368 305
output:
0
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #4:
score: -100
Wrong Answer
time: 194ms
memory: 4840kb
input:
2000 9274 7020 6000 7020 6000 7030 8801 7030 8801 7040 6000 7040 6000 7050 6517 7050 6517 7060 6000 7060 6000 7070 6182 7070 6182 7080 6000 7080 6000 7090 9928 7090 9928 7100 6000 7100 6000 7110 8928 7110 8928 7120 6000 7120 6000 7130 7778 7130 7778 7140 6000 7140 6000 7150 8627 7150 8627 7160 6000 ...
output:
20000000
result:
wrong answer 1st numbers differ - expected: '80000.0000000', found: '20000000.0000000', error = '249.0000000'