QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#751129#602. 最小费用最大流(随机数据)eolienne70 1398ms4900kbC++203.3kb2024-11-15 17:12:292024-11-15 17:12:30

Judging History

你现在查看的是最新测评结果

  • [2024-11-15 17:12:30]
  • 评测
  • 测评结果:70
  • 用时:1398ms
  • 内存:4900kb
  • [2024-11-15 17:12:29]
  • 提交

answer

#include "bits/stdc++.h"
using namespace std;
#define int long long
#define double long double
#define pii pair<int,int>
#define s second
#define f first
#define pb push_back
#define oo 1000000000000000000ll
#define all(a) (a).begin(), a.end()
#define rall(a) (a).rbegin(), a.rend()
#define ln '\n'

/* Contains: Maxflow_Mincost using Dijkstra
 * Assumptions: None
 * NOTE: change ftype, wtype to double for real-valued flow
 * Complexity: O(nm + (n+m)log(m)f) */
typedef int ftype; typedef double wtype;
const wtype EPS = 1; // 1e-9 for double
struct Edge { int from, to; ftype pushable, pushed; wtype w;};
struct MCMF{
    int n, s, t, m = 0;
    ftype flow; wtype cost;
    vector<int> vis, prv;
    vector<wtype> dist, h;
    vector<vector<int>> adj;
    vector<Edge> edges;
    MCMF(int n_): n(n_+10), vis(n), prv(n, -1), dist(n), h(n), adj(n) {}
    void add(int a, int b, ftype cap, wtype w, ftype low=0){
        edges.push_back({a, b, cap, low, w});
        edges.push_back({b, a, 0, low, -w});
        adj[a].push_back(m++);
        adj[b].push_back(m++);
    }
    bool dijkstra(){
        priority_queue<pair<wtype, int>, vector<pair<wtype, int>>, greater<pair<wtype, int>>> pq;
        fill(all(dist), oo); pq.push({dist[s]=0, s});
        while (!pq.empty()){
            int u = pq.top().s, val = pq.top().f; pq.pop();
            if (dist[u] < val) continue;
            for (auto id: adj[u]){
                Edge& e = edges[id];
                int v = e.to; wtype nc = e.w + h[u] - h[v];
                if (e.pushable < EPS || dist[v] < dist[u] + nc + EPS) continue;
                dist[v] = dist[u] + nc;
                prv[v] = id;
                pq.push({dist[v], v});
            }
        }
        return oo - dist[t] > EPS;
    }
    void spfa(){
        queue<int> q; fill(all(h), wtype(oo));
        q.push(s); h[s] = 0, vis[s] = 1;
        while (!q.empty()){
            int u = q.front(); q.pop();
            vis[u] = 0;
            for (auto id: adj[u]){
                Edge& e = edges[id];
                if (e.pushable < EPS || h[e.to] < h[u] + e.w + EPS) continue;
                h[e.to] = h[u] + e.w;
                if (!vis[e.to]) vis[e.to] = 1, q.push(e.to);
            }
        }
    }
    void calc(int S, int T){
        flow = cost = 0, s = S, t = T;
        spfa();
        while (dijkstra()){
            ftype f = oo;
            for (int i = 0; i < n; i++) h[i] = min(wtype(oo), h[i] + dist[i]);
            for (int x = prv[t]; x != -1; x = prv[edges[x].from]) f = min(f, edges[x].pushable);
            for (int x = prv[t]; x != -1; x = prv[edges[x].from]) {
                edges[x].pushable -= f, edges[x].pushed += f;
                edges[x^1].pushable += f, edges[x^1].pushed -= f;
            }
            flow += f; cost += h[t] * f;
        }
    }
};




void solve(){
    int n, m; cin >> n >> m;
    MCMF mcmf(n);
    while (m--){
        int u, v, cap, w; cin >> u >> v >> cap >> w;
        mcmf.add(u, v, cap, w);
    }
    mcmf.calc(1, n);
    cout << mcmf.flow << ' ' << mcmf.cost << ln;
}


signed main(){
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    // int TT; cin >> TT;
    // while (TT--) solve();
    // while (1) solve();
    solve();

}

Details

Tip: Click on the bar to expand more detailed information

Pretests


Final Tests

Test #1:

score: 10
Accepted
time: 0ms
memory: 3952kb

input:

8 27
2 3 2147483647 100
1 3 1 100
2 4 2147483647 10
1 4 1 10
2 4 2147483647 10
1 4 1 10
2 8 3 0
3 5 2147483647 100
1 5 1 100
3 8 1 0
3 2 2147483647 0
4 5 2147483647 10
1 5 1 10
4 8 1 0
4 2 2147483647 0
5 6 2147483647 1
1 6 1 1
5 6 2147483647 1
1 6 1 1
5 7 2147483647 1
1 7 1 1
5 8 3 0
5 2 2147483647 ...

output:

8 243

result:

ok 2 number(s): "8 243"

Test #2:

score: 10
Accepted
time: 0ms
memory: 3828kb

input:

12 49
2 10 2147483647 5
1 10 1 5
2 5 2147483647 50
1 5 1 50
2 9 2147483647 8
1 9 1 8
2 8 2147483647 47
1 8 1 47
2 11 2147483647 17
1 11 1 17
2 12 5 0
3 12 0 0
3 2 2147483647 0
4 6 2147483647 18
1 6 1 18
4 11 2147483647 12
1 11 1 12
4 9 2147483647 14
1 9 1 14
4 12 3 0
4 2 2147483647 0
5 11 2147483647...

output:

15 436

result:

ok 2 number(s): "15 436"

Test #3:

score: 10
Accepted
time: 0ms
memory: 4088kb

input:

27 169
2 15 2147483647 24
1 15 1 24
2 19 2147483647 96
1 19 1 96
2 12 2147483647 49
1 12 1 49
2 13 2147483647 75
1 13 1 75
2 24 2147483647 2
1 24 1 2
2 27 5 0
3 27 0 0
3 2 2147483647 0
4 11 2147483647 99
1 11 1 99
4 3 2147483647 85
1 3 1 85
4 27 2 0
4 2 2147483647 0
5 27 0 0
5 2 2147483647 0
6 9 214...

output:

60 4338

result:

ok 2 number(s): "60 4338"

Test #4:

score: 10
Accepted
time: 49ms
memory: 4148kb

input:

77 2149
2 42 2147483647 33
1 42 1 33
2 68 2147483647 30
1 68 1 30
2 76 2147483647 13
1 76 1 13
2 51 2147483647 93
1 51 1 93
2 12 2147483647 39
1 12 1 39
2 57 2147483647 74
1 57 1 74
2 70 2147483647 21
1 70 1 21
2 73 2147483647 24
1 73 1 24
2 52 2147483647 54
1 52 1 54
2 15 2147483647 99
1 15 1 99
2 ...

output:

1000 74606

result:

ok 2 number(s): "1000 74606"

Test #5:

score: 10
Accepted
time: 172ms
memory: 4144kb

input:

102 4199
2 48 2147483647 42
1 48 1 42
2 85 2147483647 50
1 85 1 50
2 22 2147483647 83
1 22 1 83
2 95 2147483647 97
1 95 1 97
2 82 2147483647 34
1 82 1 34
2 25 2147483647 72
1 25 1 72
2 4 2147483647 17
1 4 1 17
2 47 2147483647 10
1 47 1 10
2 71 2147483647 12
1 71 1 12
2 68 2147483647 39
1 68 1 39
2 2...

output:

2000 161420

result:

ok 2 number(s): "2000 161420"

Test #6:

score: 10
Accepted
time: 173ms
memory: 4200kb

input:

102 4199
2 79 2147483647 13
1 79 1 13
2 83 2147483647 73
1 83 1 73
2 75 2147483647 90
1 75 1 90
2 30 2147483647 92
1 30 1 92
2 54 2147483647 25
1 54 1 25
2 66 2147483647 53
1 66 1 53
2 52 2147483647 37
1 52 1 37
2 63 2147483647 46
1 63 1 46
2 11 2147483647 20
1 11 1 20
2 55 2147483647 53
1 55 1 53
2...

output:

2000 143072

result:

ok 2 number(s): "2000 143072"

Test #7:

score: 10
Accepted
time: 172ms
memory: 4344kb

input:

102 4199
2 39 2147483647 45
1 39 1 45
2 51 2147483647 11
1 51 1 11
2 86 2147483647 63
1 86 1 63
2 23 2147483647 46
1 23 1 46
2 48 2147483647 63
1 48 1 63
2 87 2147483647 8
1 87 1 8
2 73 2147483647 63
1 73 1 63
2 5 2147483647 52
1 5 1 52
2 80 2147483647 21
1 80 1 21
2 31 2147483647 44
1 31 1 44
2 101...

output:

2000 146132

result:

ok 2 number(s): "2000 146132"

Test #8:

score: 0
Wrong Answer
time: 1326ms
memory: 4860kb

input:

302 10599
2 72 2147483647 169
1 72 1 169
2 260 2147483647 165
1 260 1 165
2 12 2147483647 108
1 12 1 108
2 16 2147483647 26
1 16 1 26
2 28 2147483647 148
1 28 1 148
2 7 2147483647 74
1 7 1 74
2 139 2147483647 199
1 139 1 199
2 231 2147483647 9
1 231 1 9
2 287 2147483647 123
1 287 1 123
2 135 2147483...

output:

5000 1.10632e+06

result:

wrong output format Expected integer, but "1.10632e+06" found

Test #9:

score: 0
Wrong Answer
time: 1398ms
memory: 4880kb

input:

302 10599
2 222 2147483647 132
1 222 1 132
2 17 2147483647 7
1 17 1 7
2 177 2147483647 253
1 177 1 253
2 90 2147483647 195
1 90 1 195
2 128 2147483647 289
1 128 1 289
2 42 2147483647 193
1 42 1 193
2 213 2147483647 133
1 213 1 133
2 263 2147483647 293
1 263 1 293
2 50 2147483647 155
1 50 1 155
2 228...

output:

5000 1.29087e+06

result:

wrong output format Expected integer, but "1.29087e+06" found

Test #10:

score: 0
Wrong Answer
time: 1334ms
memory: 4900kb

input:

302 10599
2 176 2147483647 289
1 176 1 289
2 190 2147483647 99
1 190 1 99
2 10 2147483647 96
1 10 1 96
2 240 2147483647 165
1 240 1 165
2 273 2147483647 205
1 273 1 205
2 248 2147483647 194
1 248 1 194
2 220 2147483647 122
1 220 1 122
2 194 2147483647 167
1 194 1 167
2 8 2147483647 67
1 8 1 67
2 227...

output:

5000 1.3959e+06

result:

wrong output format Expected integer, but "1.3959e+06" found