QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#750274#9631. Median Replacementxiaolei338WA 1ms3636kbC++207.9kb2024-11-15 13:47:152024-11-15 13:47:16

Judging History

你现在查看的是最新测评结果

  • [2024-11-15 13:47:16]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:3636kb
  • [2024-11-15 13:47:15]
  • 提交

answer

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
const int N = 310, mod = 998244353, INF = 0x3f3f3f3f;
random_device rd;
mt19937_64 rng(rd());

LL n, m;
// LL a[N];

template<class T>
constexpr T power(T a, LL b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

constexpr LL mul(LL a, LL b, LL p) {
    LL res = a * b - LL(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<LL P>
struct MLong {
    LL x;
    constexpr MLong() : x{} {}
    constexpr MLong(LL x) : x{norm(x % getMod())} {}
    
    static LL Mod;
    constexpr static LL getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(LL Mod_) {
        Mod = Mod_;
    }
    constexpr LL norm(LL x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr LL val() const {
        return x;
    }
    explicit constexpr operator LL() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        LL v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
LL MLong<0LL>::Mod = LL(1E18) + 9;

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(LL x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        LL v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 998244353;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 1000000007;
using Z = MInt<P>;

LL l[N], r[N], pos[N], len[N];
Z f[N][2][2][2], cx[N], cy[N];
Z ans;
void solve()
{
    cin >> n;
    m = 0;
    for(int i = 1; i <= n; i ++)cin >> l[i], pos[++ m] = l[i] - 1;
    for(int i = 1; i <= n; i ++)cin >> r[i], pos[++ m] = r[i];
    for(int i = 1; i <= n; i ++)len[i] = r[i] - l[i] + 1;
    pos[++ m] = 0;
    ans = 0;
    sort(pos + 1, pos + 1 + m);
    int sz = unique(pos + 1, pos + 1 + m) - pos - 1;
    auto dp = [&](int va) -> Z{
        memset(f, 0, sizeof(f));
        f[0][0][0][0] = 1;
        for(int i = 1; i <= n; i ++){
            for(int j = 0; j <= 1; j ++){
                for(int k = 0; k <= 1; k ++){
                    for(int al = 0; al <= 1; al ++){
                        if(f[i - 1][j][k][al] != 0){
                            if(va <= r[i]){
                                if(va > l[i])f[i][k][0][al] += f[i - 1][j][k][al] * (va - l[i]);
                                f[i][k][1][al | j | k] += f[i - 1][j][k][al] * (1 + r[i] - max(l[i], (LL)va));
                            }else{
                                f[i][k][0][al] += len[i] * f[i - 1][j][k][al];
                            }
                        }
                    }
                }
            }
        }
        Z sum = 0;
        for(int i = 0; i <= 1; i ++){
            for(int j = 0; j <= 1; j ++){
                sum += f[n][i][j][1];
            }
        }
        return sum;
    };
    for(int k = 1; k < sz; k ++)
    {
        int L = pos[k] + 1, R = pos[k + 1];
        if((R - L + 1) <= n){
            for(int i = L; i <= R; i ++)ans += dp(i);
        }else{
            LL ccl = 0;
            for(int i = L; i <= L + n + 1; i ++)cx[++ ccl] = i, cy[ccl] = dp(i);
            for(int i = 2; i <= ccl; i ++)cy[i] += cy[i - 1];
            for(int i = 1; i <= ccl; i ++)
            {
                Z sum = cy[i], fk = 1;
                for(int j = 1; j <= ccl; j ++){
                    if(i != j){
                        Z sum1 = R - cx[j], sum2 = cx[i] - cx[j];
                        sum *= sum1;
                        fk *= sum2;
                    }
                    ans += sum * power(fk, P - 2);
                }
            }
        }
    }
    cout << ans << '\n';
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    LL _T = 1;
    cin >> _T;
    while(_T --)
    {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 1ms
memory: 3636kb

input:

10
5
5 1 4 3 2
14 2 5 3 2
5
4 5 1 2 3
13 7 1 2 3
5
5 2 5 3 1
10 2 12 3 2
5
5 5 3 1 5
57 5 3 1 5
5
2 2 3 3 5
4 5 4 4 5
5
4 5 3 5 3
13 7 3 5 3
5
5 1 4 2 3
14 3 4 2 3
5
1 2 5 4 5
2 8 5 7 5
5
1 1 3 5 1
8 2 3 8 1
5
4 4 4 2 3
5 10 5 2 3

output:

180
170
333347420
265
182
173
120
296
192
131

result:

wrong answer 3rd lines differ - expected: '650', found: '333347420'