QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#748795 | #6137. Sub-cycle Graph | tassei903# | TL | 40ms | 18140kb | Python3 | 1.1kb | 2024-11-14 21:28:22 | 2024-11-14 21:28:26 |
Judging History
answer
mod = 10 ** 9 + 7
nn = 100000
fact = [1] * nn
for i in range(nn - 1):
fact[i + 1] = fact[i] * (i + 1) % mod
invfact = [1] * nn
invfact[nn - 1] = pow(fact[nn - 1], mod - 2, mod)
for i in range(nn - 1)[::-1]:
invfact[i] = invfact[i + 1] * (i + 1) % mod
def binom(x, y):
if x < 0 or y < 0 or x - y < 0:
return 0
return fact[x] * invfact[y] % mod * invfact[x - y] % mod
def greedy(n, m):
if m > n:
return 0
elif m == n:
return fact[n-1] * pow(2, mod-2, mod) % mod
g = [0] * (n + 1)
g[0] = 1
for _ in range(n-m):
ng = [0] * (n + 1)
for i in range(n):
for j in range(1, n - i + 1):
if j > 1:
ng[i+j] += g[i] * j * pow(2 * (i + j), mod-2, mod) % mod
else:
ng[i+j] += g[i] * pow(i + 1, mod-2, mod) % mod
ng[i+j] %= mod
g = ng
# print(g)
return fact[n] * g[n] % mod
for _ in range(int(input())):
n, m = map(int, input().split())
print(greedy(n, m))
详细
Test #1:
score: 100
Accepted
time: 40ms
memory: 18140kb
input:
3 4 2 4 3 5 3
output:
15 12 90
result:
ok 3 number(s): "15 12 90"
Test #2:
score: -100
Time Limit Exceeded
input:
17446 3 0 3 1 3 2 3 3 4 0 4 1 4 2 4 3 4 4 5 0 5 1 5 2 5 3 5 4 5 5 6 0 6 1 6 2 6 3 6 4 6 5 6 6 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11...
output:
1 3 3 1 1 6 15 12 3 1 10 45 90 60 12 1 15 105 375 630 360 60 1 21 210 1155 3465 5040 2520 360 1 28 378 2940 13545 35280 45360 20160 2520 1 36 630 6552 42525 170100 393120 453600 181440 20160 1 45 990 13230 114345 643545 2286900 4762800 4989600 1814400 181440 1 55 1485 24750 273735 2047815 10239075 3...