QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#748582#9619. 乘积,欧拉函数,求和xiaolei338RE 73ms12040kbC++237.6kb2024-11-14 20:46:082024-11-14 20:46:08

Judging History

你现在查看的是最新测评结果

  • [2024-11-14 20:46:08]
  • 评测
  • 测评结果:RE
  • 用时:73ms
  • 内存:12040kb
  • [2024-11-14 20:46:08]
  • 提交

answer

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
const int N = 1e6 + 10, mod = 998244353, INF = 0x3f3f3f3f;
random_device rd;
mt19937_64 rng(rd());

LL n, m;
LL a[N];

template<class T>
constexpr T power(T a, LL b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

constexpr LL mul(LL a, LL b, LL p) {
    LL res = a * b - LL(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<LL P>
struct MLong {
    LL x;
    constexpr MLong() : x{} {}
    constexpr MLong(LL x) : x{norm(x % getMod())} {}
    
    static LL Mod;
    constexpr static LL getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(LL Mod_) {
        Mod = Mod_;
    }
    constexpr LL norm(LL x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr LL val() const {
        return x;
    }
    explicit constexpr operator LL() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        LL v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
LL MLong<0LL>::Mod = LL(1E18) + 9;

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(LL x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        LL v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 998244353;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 998244353;
using Z = MInt<P>;

LL prime[N], rk[N], tot;
bool vis[N];
vector<LL> fac[N], g[N];
Z inv[N], dp[N], lst[N];
void solve()
{
    cin >> n;
    for(int i = 1; i <= n; i ++)cin >> a[i];
    for(int i = 1; i <= 3000; i ++)inv[i] = (i - 1) * power((Z)i, mod - 2);
    for(int i = 2; i <= 3000; i ++)
    {
        if(!vis[i])prime[++ tot] = i, rk[i] = tot;
        for(int j = i + i; j <= 3000; j += i)vis[j] = 1;
    }
    for(int i = 1; i <= n; i ++)
    {
        LL tmp = a[i];
        for(int j = 1; j <= tot && prime[j] <= a[i]; j ++){
            if(a[i] % prime[j] == 0){
                fac[i].push_back(prime[j]);
                while(a[i] % prime[j] == 0)a[i] /= prime[j];
            }
        }
        a[i] = tmp;
    }
    dp[0] = 1;
    for(int i = 1; i <= n; i ++)
    {
        if(!fac[i].empty() && fac[i].back() > 53)g[rk[fac[i].back()]].push_back(i);
        else{
            int now = 0;
            for(int j = 0; j < fac[i].size(); j ++)now |= 1 << (rk[fac[i][j]] - 1);
            for(int s = (1 << 16) - 1; s >= 0; s --)dp[s | now] += dp[s] * a[i];
        }
    }
    for(int now = 17; now <= tot; now ++)
    {
        for(int s = 0; s < 1 << 16; s ++)lst[s] = dp[s];
        for(int i = 0; i < g[now].size(); i ++)
        {
            int pos = g[now][i], tmp = 0;
            for(int j = 0; j < fac[pos].size(); j ++)tmp |= 1 << (rk[fac[pos][j]] - 1);
            for(int s = (1 << 16) - 1; s >= 0; s --)dp[s | tmp] += dp[s] * a[pos];
        }
        for(int s = 0; s < 1 << 16; s ++)
        {
            dp[s] -= lst[s];
            dp[s] = dp[s] * inv[prime[now]] + lst[s];
        }
    }
    Z ans = 0;
    for(int s = 0; s < 1 << 16; s ++)
    {
        Z mul = 1;
        for(int i = 0; i < 16; i ++)
        {
            if((s >> i) & 1)mul *= inv[prime[i + 1]];
        }
        ans += mul * dp[s];
    }
    // cout << (LL)pow(2, 17) << '\n';
    cout << ans << '\n';
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    LL _T = 1;
    // cin >> _T;
    while(_T --)
    {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 73ms
memory: 11988kb

input:

5
1 6 8 6 2

output:

892

result:

ok single line: '892'

Test #2:

score: 0
Accepted
time: 69ms
memory: 12040kb

input:

5
3 8 3 7 8

output:

3157

result:

ok single line: '3157'

Test #3:

score: -100
Runtime Error

input:

2000
79 1 1 1 1 1 1 2803 1 1 1 1 1 1 1609 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2137 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 613 1 499 1 211 1 2927 1 1 1327 1 1 1123 1 907 1 2543 1 1 1 311 2683 1 1 1 1 2963 1 1 1 641 761 1 1 1 1 1 1 1 1 1 1 1 1489 2857 1 1 1 1 1 1 1 1 1 1 1 1 1 967 1 821 1 1 1 1 2143 1861...

output:


result: