QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#74653 | #5445. Vulpecula | maspy | AC ✓ | 2461ms | 277044kb | C++20 | 31.0kb | 2023-02-03 09:52:44 | 2023-02-03 09:52:46 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng) {
assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
constexpr bool is_directed() { return directed; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void resize(int n) { N = n; }
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
void read_parent(int off = 1) {
for (int v = 1; v < N; ++v) {
INT(p);
p -= off;
add(p, v);
}
build();
}
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 3 "library/graph/tree.hpp"
// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
bool hld;
vector<int> LID, RID, head, V, parent;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = -1, bool hld = 1)
: G(G),
N(G.N),
hld(hld),
LID(G.N),
RID(G.N),
head(G.N, r),
V(G.N),
parent(G.N, -1),
depth(G.N, -1),
depth_weighted(G.N, 0) {
assert(G.is_prepared());
int t1 = 0;
if (r != -1) {
dfs_sz(r, -1);
dfs_hld(r, t1);
} else {
for (int r = 0; r < N; ++r) {
if (parent[r] == -1) {
head[r] = r;
dfs_sz(r, -1);
dfs_hld(r, t1);
}
}
}
}
void dfs_sz(int v, int p) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
dfs_sz(e.to, v);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
/* k: 0-indexed */
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int lca(int u, int v) { return LCA(u, v); }
int la(int u, int v) { return LA(u, v); }
int subtree_size(int v) { return RID[v] - LID[v]; }
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist(int a, int b, bool weighted) {
assert(weighted);
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
};
#line 1 "library/graph/rerooting_dp.hpp"
#line 4 "library/graph/rerooting_dp.hpp"
template <typename TREE, typename Data>
struct Rerooting_dp {
TREE& tree;
vc<Data> dp_1; // 辺 pv に対して、部分木 v
vc<Data> dp_2; // 辺 pv に対して、部分木 p
vc<Data> dp; // すべての v に対して、v を根とする部分木
template <typename F1, typename F2, typename F3>
Rerooting_dp(TREE& tree, F1 f_ee, F2 f_ev, F3 f_ve, const Data unit)
: tree(tree) {
assert(!tree.G.is_directed());
build(f_ee, f_ev, f_ve, unit);
}
// v を根としたときの full tree
Data operator[](int v) { return dp[v]; }
// root を根としたときの部分木 v
Data get(int root, int v) {
if (root == v) return dp[v];
if (!tree.in_subtree(root, v)) { return dp_1[v]; }
int w = tree.jump(v, root, 1);
return dp_2[w];
}
template <typename F1, typename F2, typename F3>
void build(F1 f_ee, F2 f_ev, F3 f_ve, const Data unit) {
int N = tree.G.N;
dp_1.assign(N, unit);
dp_2.assign(N, unit);
dp.assign(N, unit);
auto& V = tree.V;
auto& par = tree.parent;
FOR_R(i, N) {
int v = V[i];
auto ch = tree.collect_child(v);
int n = len(ch);
vc<Data> Xl(n + 1, unit), Xr(n + 1, unit);
FOR(i, n) Xl[i + 1] = f_ee(Xl[i], dp_2[ch[i]]);
FOR_R(i, n) Xr[i] = f_ee(dp_2[ch[i]], Xr[i + 1]);
FOR(i, n) dp_2[ch[i]] = f_ee(Xl[i], Xr[i + 1]);
dp[v] = Xr[0];
dp_1[v] = f_ev(dp[v], v);
for (auto&& e: tree.G[v]) {
if (e.to == par[v]) { dp_2[v] = f_ve(dp_1[v], e); }
}
}
{
int v = V[0];
dp[v] = f_ev(dp[v], v);
for (auto&& e: tree.G[v]) dp_2[e.to] = f_ev(dp_2[e.to], v);
}
FOR(i, N) {
int v = V[i];
for (auto&& e: tree.G[v]) {
if (e.to == par[v]) continue;
Data x = f_ve(dp_2[e.to], e);
for (auto&& f: tree.G[e.to]) {
if (f.to == par[e.to]) continue;
dp_2[f.to] = f_ee(dp_2[f.to], x);
dp_2[f.to] = f_ev(dp_2[f.to], e.to);
}
x = f_ee(dp[e.to], x);
dp[e.to] = f_ev(x, e.to);
}
}
}
};
#line 1 "library/linalg/xor/solve_linear.hpp"
// solve Ax = b を解く。[0] に特殊解、[1]~ に Ker A の基底が入る。解なしは
// empty。 A の行ベクトルを UINT で持たせる。
template <typename UINT>
vc<UINT> solve_linear(int n, int m, vc<UINT>& A, UINT b) {
assert(max(n, m) <= numeric_limits<UINT>::digits);
assert(len(A) == n);
int rk = 0;
FOR(j, m) {
if (rk == n) break;
FOR(i, rk, n) if (A[i] >> j & 1) {
if (i == rk) break;
swap(A[rk], A[i]);
if ((b >> rk & 1) != (b >> i & 1)) b ^= (UINT(1) << rk) | (UINT(1) << i);
break;
}
if (!(A[rk] >> j & 1)) continue;
FOR(i, n) if (i != rk) {
if (A[i] >> j & 1) {
A[i] ^= A[rk];
b ^= (b >> rk & 1) << i;
}
}
++rk;
}
if (b >> rk) { return {}; }
vc<UINT> res(1);
vc<int> pivot(m, -1);
int p = 0;
FOR(i, rk) {
while (!(A[i] >> p & 1)) ++p;
res[0] |= (b >> i & 1) << p;
pivot[p] = i;
}
FOR(j, m) if (pivot[j] == -1) {
UINT x = 0;
x |= UINT(1) << j;
FOR(k, j) if (pivot[k] != -1 && (A[pivot[k]] >> j & 1)) {
x |= UINT(1) << k;
}
res.eb(x);
}
return res;
}
#line 2 "library/linalg/xor/transpose.hpp"
// n x m 行列の transpose。O((n+m)log(n+m)) 時間。
// https://github.com/dsnet/matrix-transpose
template <typename UINT>
vc<UINT> transpose(int n, int m, vc<UINT>& A, bool keep_A = 1) {
assert(max(n, m) <= numeric_limits<UINT>::digits);
assert(len(A) == n);
vc<UINT> tmp;
if (keep_A) tmp = A;
int LOG = 0;
while ((1 << LOG) < max(n, m)) ++LOG;
A.resize(1 << LOG);
int width = 1 << LOG;
UINT mask = 1;
FOR(i, LOG) mask = mask | (mask << (1 << i));
FOR(t, LOG) {
width >>= 1;
mask = mask ^ (mask >> width);
FOR(i, 1 << t) {
FOR(j, width) {
UINT* x = &A[width * (2 * i + 0) + j];
UINT* y = &A[width * (2 * i + 1) + j];
*x = ((*y << width) & mask) ^ *x;
*y = ((*x & mask) >> width) ^ *y;
*x = ((*y << width) & mask) ^ *x;
}
}
}
A.resize(m);
if (!keep_A) return A;
swap(A, tmp);
return tmp;
}
#line 3 "library/linalg/xor/vector_space.hpp"
template <typename UINT>
struct Vector_Space {
#define SP Vector_Space
vc<UINT> dat;
Vector_Space() {}
Vector_Space(vc<UINT> dat, bool is_reduced = false) : dat(dat) {
if (!is_reduced) reduce();
}
int size() { return dat.size(); }
bool add_element(UINT v) {
for (auto&& e: dat) {
if (e == 0 || v == 0) break;
chmin(v, v ^ e);
}
if (v) {
dat.eb(v);
return true;
}
return false;
}
void reduce() {
SP y;
for (auto&& e: dat) y.add_element(e);
(*this) = y;
}
bool contain(UINT v) {
for (auto&& w: dat) {
if (v == 0) break;
chmin(v, v ^ w);
}
return v == 0;
}
UINT get_max(UINT xor_val = 0) {
UINT res = xor_val;
for (auto&& x: dat) chmax(res, res ^ x);
return res;
}
UINT get_min(UINT xor_val) {
UINT res = xor_val;
for (auto&& x: dat) chmin(res, res ^ x);
return res;
}
static SP merge(SP x, SP y) {
if (len(x) < len(y)) swap(x, y);
for (auto v: y.dat) { x.add_element(v); }
return x;
}
static SP intersection(SP& x, SP& y, int max_dim) {
SP xx = x.orthogonal_space(max_dim);
SP yy = y.orthogonal_space(max_dim);
xx = merge(xx, yy);
return xx.orthogonal_space(max_dim);
}
SP orthogonal_space(int max_dim) {
int n = len(dat);
// 三角化
FOR(j, n) FOR(i, j) chmin(dat[i], dat[i] ^ dat[j]);
int m = max_dim;
// pivot[k] == k となるように行の順番を変える
vc<u64> tmp(m);
FOR(i, len(dat)) tmp[topbit(dat[i])] = dat[i];
tmp = transpose(m, m, tmp, 0);
SP res;
FOR(j, m) {
if (tmp[j] >> j & 1) continue;
res.add_element(tmp[j] | UINT(1) << j);
}
return res;
}
#undef SP
};
#line 6 "main.cpp"
const int LOG = 64;
// 行ベクトルを整数型で表現
template <typename UINT>
vc<UINT> mat_inv(vc<UINT> A) {
const int N = len(A);
vc<UINT> B(N);
FOR(i, N) B[i] = u64(1) << i;
FOR(i, N) FOR(j, N) if (j != i) {
if (chmin(A[i], A[i] ^ A[j])) B[i] ^= B[j];
}
vc<UINT> res(N);
FOR(i, N) res[topbit(A[i])] = B[i];
return res;
/*
FOR(i, N) {
FOR(k, i, N) if (A[k] >> i & 1) {
if (k != i) { swap(A[i], A[k]), swap(B[i], B[k]); }
break;
}
if (!(A[i] >> i & 1)) return {};
FOR(k, N) if (i != k) {
if (!(A[k] >> i & 1)) continue;
A[k] ^= A[i];
B[k] ^= B[i];
}
}
return B;
*/
}
vc<u64> solve_QOJ_5445(int N, vc<int> par, vvc<u64> dat) {
using SP = Vector_Space<u64>;
Graph<bool, 0> G(N);
FOR(v, 1, N) { G.add(par[v - 1] - 1, v); }
G.build();
Tree<decltype(G)> tree(G);
vc<SP> dual(N);
FOR(v, N) {
SP x;
for (auto&& e: dat[v]) x.add_element(e);
dual[v] = x.orthogonal_space(LOG);
}
/*
木 dp の状態
・深さ d のときに dual space に a が追加される (d,a) というイベントの列
・高々 64
*/
using P = pair<int, u64>;
using Data = vc<P>;
Data unit = {};
auto fee = [&](Data& x, Data& y) -> Data {
// merge sort
Data z;
auto V = SP{};
auto add = [&](P& dat) -> void {
if (len(V) == LOG) return;
if (V.add_element(dat.se)) z.eb(dat.fi, V.dat.back());
};
int p = 0, q = 0;
while (p < len(x) || q < len(y)) {
if (len(V) == LOG) break;
if (p == len(x)) { add(y[q++]); }
elif (q == len(y)) { add(x[p++]); }
else {
if (x[p].fi < y[q].fi) {
add(x[p++]);
} else {
add(y[q++]);
}
}
}
return z;
};
auto fev = [&](Data& x, int v) -> Data {
Data y;
for (auto&& a: dual[v].dat) y.eb(0, a);
auto V = dual[v];
for (auto&& [d, a]: x) {
if (len(V) == LOG) break;
if (V.add_element(a)) y.eb(d, V.dat.back());
}
return y;
};
// e は v から出る有向辺
auto fve = [&](Data x, auto& e) -> Data {
for (auto&& [d, a]: x) ++d;
return x;
};
Rerooting_dp<decltype(tree), Data> dp(tree, fee, fev, fve, unit);
vc<u64> ANS(N);
FOR(v, N) {
auto event = dp[v];
// full space にしておく
vc<int> done(LOG);
for (auto&& [d, a]: event) done[topbit(a)] = 1;
FOR(i, LOG) if (!done[i]) event.eb(N, u64(1) << i);
assert(len(event) == LOG);
vc<u64> mat(LOG);
FOR(i, LOG) mat[i] = event[i].se;
mat = mat_inv<u64>(mat);
mat = transpose<u64>(LOG, LOG, mat);
FOR(j, LOG) { event[j].se = mat[j]; }
event.insert(event.begin(), {0, u64(0)});
SP X{};
FOR_R(i, 1, 1 + LOG) {
u64 x = event[i].se;
X.add_element(x);
int t1 = event[i - 1].fi, t2 = event[i].fi;
if (t1 < t2) {
u64 ans = X.get_max(0);
ANS[v] += ans * u64(t2 - t1);
}
}
}
return ANS;
}
void solve() {
INT(N);
VEC(int, par, N - 1);
vvc<u64> dat(N);
FOR(v, N) {
INT(n);
dat[v].resize(n);
FOR(i, n) { read(dat[v][i]); }
}
auto ANS = solve_QOJ_5445(N, par, dat);
for (auto&& x: ANS) print(x);
}
signed main() {
solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 2ms
memory: 3616kb
input:
2 1 2 2 3 2 1 1
output:
4 2
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 2ms
memory: 3544kb
input:
5 1 2 2 3 3 83 75 58 4 125 124 58 16 4 39 125 71 112 3 69 66 5 4 48 73 69 6
output:
171 125 183 142 243
result:
ok 5 lines
Test #3:
score: 0
Accepted
time: 1ms
memory: 3516kb
input:
2 1 0 0
output:
0 0
result:
ok 2 lines
Test #4:
score: 0
Accepted
time: 20ms
memory: 5608kb
input:
500 1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...
output:
18434153946472599289 17931933346714042066 17916198204903720383 17916198204176061148 17931933346710961779 18445169471807930489 17931926407666058065 18445169471807930348 17931933346714042064 17916198204176061019 18445169471807930488 18446738828973977865 17916198204176061018 17931926407666058064 184467...
result:
ok 500 lines
Test #5:
score: 0
Accepted
time: 2021ms
memory: 214988kb
input:
49999 1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...
output:
18446744063446965319 18316893942693974299 18446744073709548919 18355577725686532847 18446744073709551614 18446744073709551615 18446744073709551614 18446744073709551615 18446736549671322125 12348860911474380074 18446744072601433415 18446744073709551615 17335313836902106838 18446744073709551576 184467...
result:
ok 49999 lines
Test #6:
score: 0
Accepted
time: 2097ms
memory: 213008kb
input:
50000 1 1 1 2 2 2 3 4 4 5 5 5 6 6 8 8 8 8 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14 14 15 15 15 16 18 18 19 19 20 20 20 20 21 23 24 24 24 24 26 26 27 27 28 29 29 29 30 30 30 31 31 32 32 32 32 33 33 33 34 34 35 35 36 36 36 36 37 38 38 38 38 39 39 39 40 41 42 43 44 44 45 45 45 46 46 47 47 47 47 47 48 4...
output:
17388026687988753207 18446123107769912009 18433598785516292263 18446483694069646475 18446744073700722557 18446743950305151556 18446123107769912008 18446170606667738311 18446744071353497819 18446744065870877991 18446744073709531050 18446744073709231216 18446546425974411728 18446744073709533965 184467...
result:
ok 50000 lines
Test #7:
score: 0
Accepted
time: 1518ms
memory: 213028kb
input:
50000 1 1 3 4 5 6 5 7 3 10 6 12 12 12 5 8 17 4 19 20 17 22 22 22 25 25 27 27 28 22 31 31 31 34 34 35 37 38 38 40 41 42 43 42 44 46 40 42 47 50 50 40 53 41 42 56 57 58 59 59 61 62 59 64 65 65 59 61 69 62 71 72 73 72 72 74 58 62 79 80 79 82 74 84 84 84 46 72 89 90 90 34 93 94 94 96 94 95 95 100 101 10...
output:
68374895075 72669862370 64079927780 59784960485 55489993190 59784959085 64079926378 51195028691 68374893673 68374895075 72669862370 64079926376 68374893671 68374893671 68374893671 59784960485 46900064818 51195032113 64079927780 68374895075 72669862370 42605100943 46900068238 46900068216 46900068238 ...
result:
ok 50000 lines
Test #8:
score: 0
Accepted
time: 835ms
memory: 86564kb
input:
25000 1 2 3 4 3 3 1 7 4 5 8 8 6 5 6 12 10 5 13 16 1 11 9 22 2 26 7 15 10 9 18 11 14 27 35 30 6 38 20 37 14 28 9 12 29 19 16 17 17 25 51 52 23 24 45 56 17 33 31 32 13 62 21 33 18 5 67 20 41 58 61 34 31 19 25 28 75 76 24 23 27 36 19 6 85 15 14 50 49 54 29 81 23 79 32 82 97 53 40 42 66 46 30 78 40 43 8...
output:
18446744070444123456 18446744051208917090 18446744073687263354 18446744073709551561 18446742841285205723 18446175471565024345 18446744041357423475 18371821048696416150 18446743733103011459 18446744058754418143 18446744073615083416 18438543872624704476 18428215314831608530 18146245131772760630 184467...
result:
ok 25000 lines
Test #9:
score: 0
Accepted
time: 1214ms
memory: 277044kb
input:
50000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 50000 lines
Test #10:
score: 0
Accepted
time: 1922ms
memory: 234928kb
input:
50000 1 2 2 4 5 6 7 8 8 10 10 11 9 14 15 15 16 18 19 13 20 22 22 21 25 26 27 28 28 4 31 32 32 34 35 36 37 38 39 40 37 42 43 44 45 45 40 48 49 50 49 52 52 41 55 55 57 56 38 60 61 62 63 64 63 50 48 68 69 69 62 72 73 72 75 68 77 56 19 44 81 82 83 82 83 61 87 87 89 90 89 92 18 94 95 96 94 98 99 96 95 10...
output:
18446744073709551601 18446744073709551602 18446744073709551603 18446744073709551603 18446744073709551604 18446744073709551605 18446744073709551606 18446744073709551607 18446744073709551608 18446744073709551608 18446744073709551609 18446744073709551607 18446744073709551610 18446744073709551609 184467...
result:
ok 50000 lines
Test #11:
score: 0
Accepted
time: 1508ms
memory: 247360kb
input:
50000 1 1 3 4 5 2 7 8 6 9 11 12 10 14 13 15 16 17 18 19 21 20 22 24 23 25 27 26 28 30 31 32 33 34 29 35 37 36 38 40 41 39 42 44 43 45 46 48 47 50 49 52 53 51 55 56 54 57 58 59 60 62 61 64 65 66 67 68 69 70 63 71 72 74 73 76 75 78 77 79 80 81 82 83 84 85 86 87 88 89 90 92 91 93 94 96 97 98 95 99 101 ...
output:
18367844186012628696 18367842430297867877 18367845941602017631 18367847696870482250 18367849452065176591 18367851207243104606 18367840674674503782 18367838919205517572 18367837164020295681 18367852674316374835 18367835408823989376 18367833653098428815 18367831897383952668 18367854141296903375 183678...
result:
ok 50000 lines
Test #12:
score: 0
Accepted
time: 2461ms
memory: 265428kb
input:
50000 1 2 1 4 5 6 7 8 9 10 3 12 13 14 15 16 17 18 19 20 21 11 23 24 22 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 25 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...
output:
11830693669206161426 15555323927066560228 835488532647364820 7363753604854029059 2894535118950984022 16874499773021899126 12292344295621663824 2102496437386641629 10354835809796005713 162709530062143497 8417327324005152592 4562471278575433430 8264626372817797937 11957077303114769622 1557751198611634...
result:
ok 50000 lines
Test #13:
score: 0
Accepted
time: 2329ms
memory: 264932kb
input:
50000 1 2 1 3 5 6 4 8 9 7 11 10 13 14 12 15 16 18 17 20 21 19 22 23 24 26 27 25 28 30 29 31 32 33 35 36 34 38 37 40 39 41 43 42 45 46 47 48 49 50 51 52 44 53 55 56 57 58 59 54 61 62 63 60 65 66 67 64 68 70 71 72 73 69 74 75 76 78 77 80 81 82 83 84 79 86 85 87 89 88 90 91 93 94 92 95 96 98 99 100 101...
output:
16810415591965710206 5275813827366931639 12187956060199693517 9898273769935206067 653336450317114274 7565460974601185858 14477586125848329007 2986131906626164386 14520727293949990938 7608579144925250248 2942966458731584974 9855075192825865421 696430430531850340 12231025207124581077 53188757511752785...
result:
ok 50000 lines
Test #14:
score: 0
Accepted
time: 1316ms
memory: 172788kb
input:
31313 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
1518477777710383951 3446880237630672556 5375282697550961161 7303685157471249766 9232087617391538371 11160490077311826976 13088892537232115581 15017294997152404186 17030136166604856930 601970532795349017 2691592330956422031 4794695333535720614 6898050158530892320 9002503327771076773 11106956497011261...
result:
ok 31313 lines
Test #15:
score: 0
Accepted
time: 1098ms
memory: 172732kb
input:
31313 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 18446744073709520303 184467...
result:
ok 31313 lines
Test #16:
score: 0
Accepted
time: 1225ms
memory: 175444kb
input:
31808 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 18446744073709519808 184467...
result:
ok 31808 lines
Test #17:
score: 0
Accepted
time: 1883ms
memory: 215488kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
15658173558095990214 15658173558095998555 15658173558123845005 15658173613076015572 15658365411239272757 2992667818252910683 10515380727096854521 3329056206310134596 14672528822163917116 9835783189211567135 5009729745968077358 256541647148705941 13954274486084260192 9213163634610566161 4448012011035...
result:
ok 50000 lines
Test #18:
score: 0
Accepted
time: 1818ms
memory: 214836kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
3246770574180091123 3246770574180091711 3246770574180125502 3246770574453894763 3246770575019028530 3246770714638951845 3247334863522250449 3411114883517164810 4193641964412498082 7329436606616368233 10534871863271214916 13810895930625513148 17721984031988561169 2040728658901769657 53817324955790019...
result:
ok 50000 lines
Test #19:
score: 0
Accepted
time: 1887ms
memory: 214772kb
input:
49997 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
13879803950673289380 13879803950673289550 13879803950673290782 13879803950673337110 13879803950674407795 13879803950684809701 13879805197930577641 13879826482644923358 13880629738256442364 14134093906395557353 18271507277841796526 13123553568911009498 11270183798612905609 8551213401850783051 6812615...
result:
ok 49997 lines
Test #20:
score: 0
Accepted
time: 1859ms
memory: 214636kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
10009788994307399163 10009788994307399196 10009788994307415900 10009788994307449079 10009788994307488500 10009788994307894593 10009788994342827120 10009788994409580461 10009789000039109023 10009789005302384418 10009790334413012985 10010155466478437881 10019568939069498282 10040873119747734210 118085...
result:
ok 50000 lines
Test #21:
score: 0
Accepted
time: 1979ms
memory: 214568kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
8197127906950493607 8197127906950493704 8197127906950493809 8197127906950494665 8197127906950503630 8197127906950513290 8197127906950519905 8197127906950710769 8197127906950751282 8197127906962741333 8197127906986143082 8197127907194345995 8197127918832372618 8197128059899073438 8197147004157338209 ...
result:
ok 50000 lines
Test #22:
score: 0
Accepted
time: 1944ms
memory: 214768kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
16883289287632485302 16883289287632485327 16883289287632486340 16883289287632486927 16883289287632487548 16883289287632488988 16883289287632491299 16883289287632569146 16883289287633014313 16883289287634010799 16883289287634081426 16883289289172254193 16883289361917645643 16883289435296772772 168832...
result:
ok 50000 lines
Test #23:
score: 0
Accepted
time: 1443ms
memory: 240064kb
input:
50000 1 2 3 4 5 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6 34 35 36 37 38 39 40 33 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...
output:
8906255203496761589 7263517325311258982 5620779447125756375 3978041568940253768 2335303690754751161 692565812569248554 10548993081682264196 12191730959867766803 13834468838053269410 15477206716238772017 17119944594424274624 315938398900225615 1958676277085728222 3601414155271230829 52441520334567334...
result:
ok 50000 lines
Test #24:
score: 0
Accepted
time: 1814ms
memory: 198384kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
10505887253194632628 10505887253199649163 10505887253204665698 10505887253209682233 10505887253214698768 10505887253219715303 10505887253224731838 10505887253229748373 10505887253234764908 10505887253239781443 10505887253244797978 10505887253249814513 10505887253254831048 10505887253259847583 105058...
result:
ok 50000 lines
Test #25:
score: 0
Accepted
time: 1422ms
memory: 201304kb
input:
50000 1 1 1 1 2 2 2 3 3 4 4 4 4 4 4 4 7 8 8 10 10 11 13 13 13 15 15 15 16 16 17 18 18 19 19 21 21 22 24 24 25 26 26 27 29 29 29 31 32 33 33 34 34 36 39 39 39 40 41 41 42 43 43 44 45 45 49 52 55 56 58 58 60 60 60 60 62 62 63 64 64 66 68 70 72 76 77 78 78 80 80 81 82 82 83 84 85 85 86 88 88 90 92 93 9...
output:
4737593169765558208 15134494603825587080 12787435809415080952 15134494603825587080 15134494603825587080 7084651964176064336 7084651964176064336 7084651964176064336 4737593169765558208 2390534375355052080 7084651964176064336 7084651964176064336 7084651964176064336 7084651964176064336 7084651964176064...
result:
ok 50000 lines
Test #26:
score: 0
Accepted
time: 1425ms
memory: 198404kb
input:
50000 1 1 3 4 5 6 7 7 9 10 4 12 11 14 15 16 15 18 19 18 21 21 23 23 22 9 13 28 29 30 31 11 27 34 35 36 37 37 35 40 40 39 43 42 45 46 46 41 49 43 39 38 53 17 50 2 57 57 59 60 61 61 63 59 65 66 67 68 69 70 71 72 73 72 75 76 74 78 77 68 81 82 82 84 85 86 86 87 89 83 91 92 93 94 85 81 97 98 99 100 100 1...
output:
18446156882414553476 18446744071320896184 18444947032707026718 18444946976966471873 18444946976363343971 18444946975822193856 18444946975794333871 18444946975766473886 18444946975778144560 18444946975761955249 18444946975745765938 18444946970557712772 18444946969840748104 18444946975729576627 184449...
result:
ok 50000 lines
Test #27:
score: 0
Accepted
time: 1446ms
memory: 214684kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
15357665124154983412 15357665124163302249 15357665124171621086 15357665124179939923 15357665124188258760 15357665124196577597 15357665124204896434 15357665124213215271 15357665124221534108 15357665124229852945 15357665124238171782 15357665124246490619 15357665124254809456 15357665124263128293 153576...
result:
ok 50000 lines
Test #28:
score: 0
Accepted
time: 1334ms
memory: 205644kb
input:
50000 1 2 3 4 5 6 7 8 9 10 10 10 13 12 10 10 17 10 10 20 21 15 19 11 25 23 24 28 29 30 31 16 33 34 35 36 37 38 39 40 41 41 41 43 41 46 41 41 49 50 51 52 53 54 55 48 26 58 59 60 41 45 63 64 65 66 67 10 69 47 71 72 27 74 42 76 77 78 14 80 81 82 83 62 85 70 87 88 89 90 44 92 93 94 95 96 97 98 99 100 10...
output:
16978346014626379089 16978346014627893800 16978346014629408511 16978346014630923222 16978346014632437933 16978346014633952644 16978346014635467355 16978346014636982066 16978346014638496777 16978346014640011488 13800810765581693289 16978344220397954045 17047785907924009580 16341238903432751054 169783...
result:
ok 50000 lines
Test #29:
score: 0
Accepted
time: 1559ms
memory: 209228kb
input:
50000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
output:
11115302636941690500 11115302636947119498 11115302636952548496 11115302636957977494 11115302636963406492 11115302636968835490 11115302636974264488 11115302636979693486 11115302636985122484 11115302636990551482 11115302636995980480 11115302637001409478 11115302637006838476 11115302637012267474 111153...
result:
ok 50000 lines
Test #30:
score: 0
Accepted
time: 1078ms
memory: 151052kb
input:
40000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26 27 28 29 10 31 32 33 34 35 36 37 38 39 10 41 42 43 44 45 46 47 48 49 10 51 52 53 54 55 56 57 58 59 10 61 62 63 64 65 66 67 68 69 10 71 72 73 74 75 76 77 78 79 10 81 82 83 84 85 86 87 88 89 10 91 92 93 94 95 96 97 98 99 10 101...
output:
14657845295672959170 14657845295672959274 14657845295672959378 14657845295672959482 14657845295672959586 14657845295672959690 14657845295672959794 14657845295672959898 14657845295672960002 14657845295672960106 18146929762413675894 13517288070671864653 10593708414547966432 8816878404747688229 1075607...
result:
ok 40000 lines