QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#746126 | #9620. osu!mania | yeah14 | AC ✓ | 15ms | 179288kb | C++17 | 3.9kb | 2024-11-14 13:32:11 | 2024-11-14 13:32:12 |
Judging History
answer
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define ull long long
#define PII pair<int ,int>
const int INF = 0x3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
int fp(int a, int x, int mod) {
int ans = 1;
while (x) {
if (x & 1)ans *= a;
ans %= mod;
a *= a;
a %= mod;
x >>= 1;
}
return ans;
}
bool check1(int n) {
for (int i = 2; i <= n / 2; i++) {
if (n % i == 0)return 0;
}
return 1;
}
struct tree {
int sum, pre, suf;
int tag = -1;
};
tree tr[4 * N];
int ls(int p) { return p << 1; }
int rs(int p) { return (p << 1) + 1; }
int history[N], tot = 0;
void add_tag(int p, int d, int pl, int pr) {
tr[p].tag += d;
tr[p].sum += d * (pr - pl + 1);
}
void push_down(int p, int len) {
if (tr[p].tag != -1) {
tr[ls(p)].tag = tr[rs(p)].tag = tr[p].tag;
tr[ls(p)].pre = tr[ls(p)].sum = (tr[p].tag == 0) ? 0 : (len - (len >> 1));
tr[rs(p)].pre = tr[rs(p)].sum = (tr[p].tag == 0) ? 0 : (len >> 1);
tr[p].tag = -1;
}
}
void push_up(int p, int len) {
tr[p].pre = tr[ls(p)].pre;
tr[p].suf = tr[rs(p)].suf;
if (tr[ls(p)].pre == (len - (len >> 1))) {
tr[p].pre = tr[ls(p)].pre + tr[rs(p)].pre;
}
if (tr[rs(p)].suf == (len >> 1)) {
tr[p].suf = tr[rs(p)].suf + tr[ls(p)].suf;
}
}
void build(int pl, int pr, int p) {
tr[p].tag = -1;
if (pl == pr) {
tr[p].sum = tr[p].pre = tr[p].suf = 1;
return;
}
int mid = (pl + pr) >> 1;
build(pl, mid, ls(p));
build(mid + 1, pr, rs(p));
push_up(p, pr - pl + 1);
}
void update(int L, int R, int c, int p, int pl, int pr) {
if (L <= pl && R >= pr) {
tr[p].pre = tr[p].suf = tr[p].sum = (c == 0) ? 0 : pr - pl + 1;
tr[p].tag = c;
return;
}
int mid = (pl + pr) >> 1;
if (L <= mid)update(L, R, c, ls(p), pl, mid);
if (R > mid)update(L, R, c, rs(p), mid + 1, pr);
//else update(x, c, rs(p), mid + 1, pr);
push_up(p, pr - pl + 1);
}
int query(int len, int p, int pl, int pr) {
if (pl == pr)return pl;
int mid = (pl + pr) >> 1;
if (len <= tr[ls(p)].sum) {
if (len <= tr[p].pre)return pl;
else return query(len, ls(p), pl, mid);
}
else if (len <= tr[rs(p)].pre + tr[ls(p)].suf) {
return mid - tr[ls(p)].suf + 1;
}
else if (len <= tr[rs(p)].sum) {
if (len <= tr[rs(p)].pre)return pl;
else return query(len, rs(p), mid + 1, pr);
}
}
const int M = N;
int prime[N], top = 0;
bool vis[N];
int a[N];
vector<PII>cntt[M];
vector<int>tt;
int sum[M];
bool vv[M];
void euler(int n) {
memset(prime, 0, sizeof(prime));
memset(vis, 0, sizeof(vis));
for (int i = 2; i <= n; i++) {
if (!vis[i])prime[top++] = i;
for (int j = 0; j < top; j++) {
if (i * prime[j] > n)break;
vis[i * prime[j]] = 1;
if (i % prime[j] == 0)break;
}
}
}
bool viss[N];
vector<int> pr[N];
int nxt[N];
bool is_prime[N];
void solve() {
int ppmax;
cin >> ppmax;
int a, b, c, d, e, f;
cin >> a >> b >> c >> d >> e >> f;
double acc = (300 * a + 300 * b + 200 * c + 100 * d + 50 * e );
acc = acc / (300.0 * (a + b + c + d + e + f));
acc *= 100;
//cout << max(0.0, (320 * a + 300 * b + 200 * c + 100 * d + 50 * e) / (320.0 * (a + b + c + d + e + f)) - 0.8) << endl;
int pp = round(round(max(0.0, (320 * a + 300 * b + 200 * c + 100 * d + 50 * e ) / (320.0 * (a + b + c + d + e +f)) - 0.8)*100000)/100000.0 * 5.0 * ppmax);
printf("%.2lf%% ", acc);
cout << pp << endl;
}
signed main() {
// ios::sync_with_stdio(0);
// cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
solve();
}
}
/*
2
630
3029 2336 377 41 10 61
3000
20000 10000 0 0 0 0
*/
详细
Test #1:
score: 100
Accepted
time: 15ms
memory: 179288kb
input:
18 1279 4624 4458 1109 220 103 314 753 3604 3204 391 33 9 29 807 5173 3986 763 84 29 96 718 576 461 60 5 2 7 947 4058 3268 764 169 42 158 568 2660 1731 161 16 6 15 641 4181 3126 656 56 10 43 630 3029 2336 377 41 10 61 529 1991 1354 181 11 9 5 1802 8321 2335 115 19 11 27 1645 3965 1087 41 6 1 13 1688...
output:
91.54% 543 97.40% 543 95.75% 523 97.12% 513 93.38% 499 98.16% 444 96.19% 430 96.20% 423 97.74% 400 99.19% 1604 99.38% 1482 99.14% 1465 98.53% 1251 100.00% 2688 100.00% 1792 100.00% 3000 52.78% 0 0.00% 0
result:
ok 18 lines