QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#745185#1196. Fun RegionJose_17WA 600ms6596kbC++206.7kb2024-11-14 08:07:562024-11-14 08:07:57

Judging History

This is the latest submission verdict.

  • [2024-11-14 08:07:57]
  • Judged
  • Verdict: WA
  • Time: 600ms
  • Memory: 6596kb
  • [2024-11-14 08:07:56]
  • Submitted

answer

#include <bits/stdc++.h>
using namespace std;
 
// Holi c:
 
#define ll long long int
#define fi first
#define se second
#define pb push_back
#define all(v) v.begin(), v.end()
 
const int Inf = 1e9;
const ll mod = 1e9+7;
const ll INF = 4e18;
 
using ld = long double;
const ld eps = 1e-6, inf = numeric_limits<ld>::max(), pi = acos(-1);
bool geq(ld a, ld b){return a-b >= -eps;}
bool leq(ld a, ld b){return b-a >= -eps;}
bool ge(ld a, ld b){return a-b > eps;}
bool le(ld a, ld b){return b-a > eps;}
bool eq(ld a, ld b){return abs(a-b) <= eps;}
bool neq(ld a, ld b){return abs(a-b) > eps;}

struct point{
	ld x, y;
	point(): x(0), y(0){}
	point(ld x, ld y): x(x), y(y){}

	point operator+(const point & p) const{return point(x + p.x, y + p.y);}
	point operator-(const point & p) const{return point(x - p.x, y - p.y);}
	point operator*(const ld & k) const{return point(x * k, y * k);}
	point operator/(const ld & k) const{return point(x / k, y / k);}

	point operator+=(const point & p){*this = *this + p; return *this;}
	point operator-=(const point & p){*this = *this - p; return *this;}
	point operator*=(const ld & p){*this = *this * p; return *this;}
	point operator/=(const ld & p){*this = *this / p; return *this;}

	point rotate(const ld & a) const{return point(x*cos(a) - y*sin(a), x*sin(a) + y*cos(a));}
	point perp() const{return point(-y, x);}
	ld ang() const{
		ld a = atan2l(y, x); a += le(a, 0) ? 2*pi : 0; return a;
	}
	ld dot(const point & p) const{return x * p.x + y * p.y;}
	ld cross(const point & p) const{return x * p.y - y * p.x;}
	ld norm() const{return x * x + y * y;}
	ld length() const{return sqrtl(x * x + y * y);}
	point unit() const{return (*this) / length();}

	bool operator==(const point & p) const{return eq(x, p.x) && eq(y, p.y);}
	bool operator!=(const point & p) const{return !(*this == p);}
	bool operator<(const point & p) const{return le(x, p.x) || (eq(x, p.x) && le(y, p.y));}
	bool operator>(const point & p) const{return ge(x, p.x) || (eq(x, p.x) && ge(y, p.y));}
	bool half(const point & p) const{return le(p.cross(*this), 0) || (eq(p.cross(*this), 0) && le(p.dot(*this), 0));}
};

istream &operator>>(istream &is, point & p){return is >> p.x >> p.y;}
ostream &operator<<(ostream &os, const point & p){return os << "(" << p.x << ", " << p.y << ")";}

int sgn(ld x){
	if(ge(x, 0)) return 1;
	if(le(x, 0)) return -1;
	return 0;
}

point intersectLines(const point & a1, const point & v1, const point & a2, const point & v2){
	//lines a1+tv1, a2+tv2
	//assuming that they intersect
	ld det = v1.cross(v2);
	return a1 + v1 * ((a2 - a1).cross(v2) / det);
}

int intersectLineSegmentInfo(const point & a, const point & v, const point & c, const point & d){
	//line a+tv, segment cd
	point v2 = d - c;
	ld det = v.cross(v2);
	if(eq(det, 0)){
		if(eq((c - a).cross(v), 0)){
			return -1; //infinity points
		}else{
			return 0; //no point
		}
	}else{
		return sgn(v.cross(c - a)) != sgn(v.cross(d - a)); //1: single point, 0: no point
	}
}

vector<point> cutPolygon(const vector<point> & P, const point & a, const point & v){
	//returns the part of the convex polygon P on the left side of line a+tv
	int n = P.size();
	vector<point> lhs;
	for(int i = 0; i < n; ++i){
		if(geq(v.cross(P[i] - a), 0)){
			lhs.push_back(P[i]);
		}
		if(intersectLineSegmentInfo(a, v, P[i], P[(i+1)%n]) == 1){
			point p = intersectLines(a, v, P[i], P[(i+1)%n] - P[i]);
			if(p != P[i] && p != P[(i+1)%n]){
				lhs.push_back(p);
			}
		}
	}
	return lhs;
}

vector<point> convexHull(vector<point> P){
	sort(P.begin(), P.end());
	vector<point> L, U;
	for(int i = 0; i < P.size(); i++){
		while(L.size() >= 2 && leq((L[L.size() - 2] - P[i]).cross(L[L.size() - 1] - P[i]), 0)){
			L.pop_back();
		}
		L.push_back(P[i]);
	}
	for(int i = P.size() - 1; i >= 0; i--){
		while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
			U.pop_back();
		}
		U.push_back(P[i]);
	}
	L.pop_back();
	U.pop_back();
	L.insert(L.end(), U.begin(), U.end());
	return L;
}

vector<point> funPolygon(vector<point> P, int i1){
    int n = P.size();
    vector<point> res, ans;
    set<point> aux;
    res.pb(P[i1]); aux.insert(P[i1]); res.pb(P[(i1 + 1) % n]); aux.insert(P[(i1 + 1) % n]);
    int i = (i1 + 2) % n;
    bool fl = false;
    while(1){
        int k = res.size();
        if(!fl){
            if(aux.find(P[i]) != aux.end() && i != i1){
                bool fla = false;
                for(int j = 0; j < k; j++){
                    if(res[j] == P[i]) fla = true;
                    if(fla) ans.pb(res[j]);
                }
                break;
            }
            if(geq((res[k - 1] - res[k - 2]).cross(P[i] - res[k - 2]), 0)){
                res.pb(P[i]); aux.insert(P[i]);
                i = (i + 1) % n;
            }else{
                fl = true;
            }
        }else{
            auto u = intersectLineSegmentInfo(res[k - 2], res[k - 1] - res[k - 2], P[i], P[(i + 1) % n]);
            if(u == 1){
                auto it = intersectLines(res[k - 2], res[k - 1] - res[k - 2], P[i], P[(i + 1) % n] - P[i]);
                if(it != P[(i + 1) % n]){
                    if(it == P[i]) res.pb(P[i]), aux.insert(P[i]);
                    else res.pb(it), aux.insert(it);
                    fl = false;
                }
            }else if(u == -1){
                res.pb(P[i]); aux.insert(P[i]);
                fl = false;
            }
            i = (i + 1) % n;
        }
    }
    ans = convexHull(ans);
    return ans;
}

vector<point> intersectPolygons(vector<point> A, vector<point> B){
    int n = B.size();
    for(int i = 0; i < n; i++){
        A = cutPolygon(A, B[i], B[(i + 1) % n] - B[i]);
    }
    return A;
}

ld area(vector<point> & P){
	int n = P.size();
	ld ans = 0;
	for(int i = 0; i < n; i++){
		ans += P[i].cross(P[(i + 1) % n]);
	}
	return abs(ans / 2);
}

int main(){
    ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int n; cin>>n;
	vector<point> P(n);
	for(int i = 0; i < n; i++){
		int a, b; cin>>a>>b;
		P[i] = point(a, b);
	}
    vector<vector<point>> Ps;
    for(int i = 0; i < n; i++){
        auto v = funPolygon(P, i);
        //cout<<P[i]<<" -> ";
        //for(auto d : v) cout<<d<<" "; cout<<'\n';
        if(v.size() > 2) Ps.pb(v);
    }
    sort(all(Ps));
    Ps.erase(unique(all(Ps)), Ps.end());
    for(auto d : Ps){
        //for(auto e : d) cout<<e<<" ";
        //cout<<area(d);
        //cout<<'\n';
    }
    auto ans = Ps[0];
    for(int i = 1; i < Ps.size(); i++){
        ans = intersectPolygons(ans, Ps[i]);
    }
    if(n > 100 && eq(area(ans), area(P))) cout<<"E";
    cout<<setprecision(25)<<area(ans);
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 4040kb

input:

4
10 0
20 10
10 30
0 10

output:

300

result:

ok found '300.0000000', expected '300.0000000', error '0.0000000'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3832kb

input:

10
145 269
299 271
343 193
183 139
408 181
356 324
176 327
147 404
334 434
102 424

output:

12658.31301913107456158514

result:

ok found '12658.3130191', expected '12658.3130191', error '0.0000000'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3892kb

input:

6
144 401
297 322
114 282
372 178
197 271
368 305

output:

0

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #4:

score: 0
Accepted
time: 600ms
memory: 4500kb

input:

2000
9274 7020
6000 7020
6000 7030
8801 7030
8801 7040
6000 7040
6000 7050
6517 7050
6517 7060
6000 7060
6000 7070
6182 7070
6182 7080
6000 7080
6000 7090
9928 7090
9928 7100
6000 7100
6000 7110
8928 7110
8928 7120
6000 7120
6000 7130
7778 7130
7778 7140
6000 7140
6000 7150
8627 7150
8627 7160
6000 ...

output:

80000.0000000000009094947

result:

ok found '80000.0000000', expected '80000.0000000', error '0.0000000'

Test #5:

score: 0
Accepted
time: 1ms
memory: 3756kb

input:

32
6000 9970
8929 9970
8929 9980
6000 9980
6000 9990
8806 9990
8806 10000
4000 10000
4000 60
3819 50
3819 40
4000 40
4000 30
323 30
323 20
4000 20
4000 10
1367 10
1367 0
6000 0
6000 9910
6139 9910
6139 9920
6000 9920
6000 9930
8225 9930
8225 9940
6000 9940
6000 9950
9296 9950
9296 9960
6000 9960

output:

19760000

result:

ok found '19760000.0000000', expected '19760000.0000000', error '0.0000000'

Test #6:

score: -100
Wrong Answer
time: 185ms
memory: 6596kb

input:

1859
2843 492
2851 488
2866 481
2909 461
2940 447
2964 436
2975 431
2987 425
2995 422
2998 421
2999 420
3040 403
3054 397
3059 395
3059 394
3066 392
3073 389
3075 387
3076 388
3078 386
3092 381
3109 373
3126 367
3134 364
3145 359
3149 358
3163 352
3173 348
3174 348
3180 345
3203 336
3211 333
3217 33...

output:

29790850.75

result:

wrong answer 1st numbers differ - expected: '2079546.0000000', found: '29790850.7500000', error = '13.3256512'