QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#745179#1196. Fun RegionJose_17WA 570ms4604kbC++206.8kb2024-11-14 08:04:432024-11-14 08:04:44

Judging History

This is the latest submission verdict.

  • [2024-11-14 08:04:44]
  • Judged
  • Verdict: WA
  • Time: 570ms
  • Memory: 4604kb
  • [2024-11-14 08:04:43]
  • Submitted

answer

#include <bits/stdc++.h>
using namespace std;
 
// Holi c:
 
#define ll long long int
#define fi first
#define se second
#define pb push_back
#define all(v) v.begin(), v.end()
 
const int Inf = 1e9;
const ll mod = 1e9+7;
const ll INF = 4e18;
 
using ld = long double;
const ld eps = 1e-6, inf = numeric_limits<ld>::max(), pi = acos(-1);
bool geq(ld a, ld b){return a-b >= -eps;}
bool leq(ld a, ld b){return b-a >= -eps;}
bool ge(ld a, ld b){return a-b > eps;}
bool le(ld a, ld b){return b-a > eps;}
bool eq(ld a, ld b){return abs(a-b) <= eps;}
bool neq(ld a, ld b){return abs(a-b) > eps;}

struct point{
	ld x, y;
	point(): x(0), y(0){}
	point(ld x, ld y): x(x), y(y){}

	point operator+(const point & p) const{return point(x + p.x, y + p.y);}
	point operator-(const point & p) const{return point(x - p.x, y - p.y);}
	point operator*(const ld & k) const{return point(x * k, y * k);}
	point operator/(const ld & k) const{return point(x / k, y / k);}

	point operator+=(const point & p){*this = *this + p; return *this;}
	point operator-=(const point & p){*this = *this - p; return *this;}
	point operator*=(const ld & p){*this = *this * p; return *this;}
	point operator/=(const ld & p){*this = *this / p; return *this;}

	point rotate(const ld & a) const{return point(x*cos(a) - y*sin(a), x*sin(a) + y*cos(a));}
	point perp() const{return point(-y, x);}
	ld ang() const{
		ld a = atan2l(y, x); a += le(a, 0) ? 2*pi : 0; return a;
	}
	ld dot(const point & p) const{return x * p.x + y * p.y;}
	ld cross(const point & p) const{return x * p.y - y * p.x;}
	ld norm() const{return x * x + y * y;}
	ld length() const{return sqrtl(x * x + y * y);}
	point unit() const{return (*this) / length();}

	bool operator==(const point & p) const{return eq(x, p.x) && eq(y, p.y);}
	bool operator!=(const point & p) const{return !(*this == p);}
	bool operator<(const point & p) const{return le(x, p.x) || (eq(x, p.x) && le(y, p.y));}
	bool operator>(const point & p) const{return ge(x, p.x) || (eq(x, p.x) && ge(y, p.y));}
	bool half(const point & p) const{return le(p.cross(*this), 0) || (eq(p.cross(*this), 0) && le(p.dot(*this), 0));}
};

istream &operator>>(istream &is, point & p){return is >> p.x >> p.y;}
ostream &operator<<(ostream &os, const point & p){return os << "(" << p.x << ", " << p.y << ")";}

int sgn(ld x){
	if(ge(x, 0)) return 1;
	if(le(x, 0)) return -1;
	return 0;
}

point intersectLines(const point & a1, const point & v1, const point & a2, const point & v2){
	//lines a1+tv1, a2+tv2
	//assuming that they intersect
	ld det = v1.cross(v2);
	return a1 + v1 * ((a2 - a1).cross(v2) / det);
}

int intersectLineSegmentInfo(const point & a, const point & v, const point & c, const point & d){
	//line a+tv, segment cd
	point v2 = d - c;
	ld det = v.cross(v2);
	if(eq(det, 0)){
		if(eq((c - a).cross(v), 0)){
			return -1; //infinity points
		}else{
			return 0; //no point
		}
	}else{
		return sgn(v.cross(c - a)) != sgn(v.cross(d - a)); //1: single point, 0: no point
	}
}

vector<point> cutPolygon(const vector<point> & P, const point & a, const point & v){
	//returns the part of the convex polygon P on the left side of line a+tv
	int n = P.size();
	vector<point> lhs;
	for(int i = 0; i < n; ++i){
		if(geq(v.cross(P[i] - a), 0)){
			lhs.push_back(P[i]);
		}
		if(intersectLineSegmentInfo(a, v, P[i], P[(i+1)%n]) == 1){
			point p = intersectLines(a, v, P[i], P[(i+1)%n] - P[i]);
			if(p != P[i] && p != P[(i+1)%n]){
				lhs.push_back(p);
			}
		}
	}
	return lhs;
}

vector<point> convexHull(vector<point> P){
	sort(P.begin(), P.end());
	vector<point> L, U;
	for(int i = 0; i < P.size(); i++){
		while(L.size() >= 2 && leq((L[L.size() - 2] - P[i]).cross(L[L.size() - 1] - P[i]), 0)){
			L.pop_back();
		}
		L.push_back(P[i]);
	}
	for(int i = P.size() - 1; i >= 0; i--){
		while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
			U.pop_back();
		}
		U.push_back(P[i]);
	}
	L.pop_back();
	U.pop_back();
	L.insert(L.end(), U.begin(), U.end());
	return L;
}

vector<point> funPolygon(vector<point> P, int i1){
    int n = P.size();
    vector<point> res, ans;
    set<point> aux;
    res.pb(P[i1]); aux.insert(P[i1]); res.pb(P[(i1 + 1) % n]); aux.insert(P[(i1 + 1) % n]);
    int i = (i1 + 2) % n;
    bool fl = false;
    while(1){
        int k = res.size();
        if(!fl){
            if(geq((res[k - 1] - res[k - 2]).cross(P[i] - res[k - 2]), 0)){
                res.pb(P[i]); aux.insert(P[i]);
                i = (i + 1) % n; k++;
            }else{
                fl = true;
            }
            if(geq((res[k - 1] - res[k - 2]).cross(P[i] - res[k - 2]), 0)) if(aux.find(P[i]) != aux.end() && i != i1){
                bool fla = false;
                for(int j = 0; j < res.size(); j++){
                    if(res[j] == P[i]) fla = true;
                    if(fla) ans.pb(res[j]);
                }
                break;
            }
        }else{
            auto u = intersectLineSegmentInfo(res[k - 2], res[k - 1] - res[k - 2], P[i], P[(i + 1) % n]);
            if(u == 1){
                auto it = intersectLines(res[k - 2], res[k - 1] - res[k - 2], P[i], P[(i + 1) % n] - P[i]);
                if(it != P[(i + 1) % n]){
                    if(it == P[i]) res.pb(P[i]), aux.insert(P[i]);
                    else res.pb(it), aux.insert(it);
                    fl = false;
                }
            }else if(u == -1){
                res.pb(P[i]); aux.insert(P[i]);
                fl = false;
            }
            i = (i + 1) % n;
        }
    }
    //for(auto e : res) cout<<e<<" "; cout<<" ||| "; for(auto e : ans) cout<<e<<" ";
    ans = convexHull(ans);
    return ans;
}

vector<point> intersectPolygons(vector<point> A, vector<point> B){
    int n = B.size();
    for(int i = 0; i < n; i++){
        A = cutPolygon(A, B[i], B[(i + 1) % n] - B[i]);
    }
    return A;
}

ld area(vector<point> & P){
	int n = P.size();
	ld ans = 0;
	for(int i = 0; i < n; i++){
		ans += P[i].cross(P[(i + 1) % n]);
	}
	return abs(ans / 2);
}

int main(){
    ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int n; cin>>n;
	vector<point> P(n);
	for(int i = 0; i < n; i++){
		int a, b; cin>>a>>b;
		P[i] = point(a, b);
	}
    vector<vector<point>> Ps;
    for(int i = 0; i < n; i++){
        auto v = funPolygon(P, i);
        if(v.size() > 2) Ps.pb(v);
      //  cout<<" ||| "; for(auto e : v) cout<<e<<" "; cout<<area(v); cout<<'\n';
    }
    sort(all(Ps));
    Ps.erase(unique(all(Ps)), Ps.end());
    for(auto e : Ps){
       // for(auto d : e) cout<<d<<" "; cout<<area(e); cout<<'\n';
    }
    auto ans = Ps[0];
    for(int i = 1; i < Ps.size(); i++){
        ans = intersectPolygons(ans, Ps[i]);
    }
    cout<<setprecision(25)<<area(ans);
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3788kb

input:

4
10 0
20 10
10 30
0 10

output:

300

result:

ok found '300.0000000', expected '300.0000000', error '0.0000000'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3812kb

input:

10
145 269
299 271
343 193
183 139
408 181
356 324
176 327
147 404
334 434
102 424

output:

12658.31301913107455803242

result:

ok found '12658.3130191', expected '12658.3130191', error '0.0000000'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3928kb

input:

6
144 401
297 322
114 282
372 178
197 271
368 305

output:

0

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #4:

score: -100
Wrong Answer
time: 570ms
memory: 4604kb

input:

2000
9274 7020
6000 7020
6000 7030
8801 7030
8801 7040
6000 7040
6000 7050
6517 7050
6517 7060
6000 7060
6000 7070
6182 7070
6182 7080
6000 7080
6000 7090
9928 7090
9928 7100
6000 7100
6000 7110
8928 7110
8928 7120
6000 7120
6000 7130
7778 7130
7778 7140
6000 7140
6000 7150
8627 7150
8627 7160
6000 ...

output:

20000000

result:

wrong answer 1st numbers differ - expected: '80000.0000000', found: '20000000.0000000', error = '249.0000000'