QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#74508#5445. Vulpeculayuto1115AC ✓4391ms454936kbC++1714.6kb2023-02-02 01:25:572023-02-02 01:26:00

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-02-02 01:26:00]
  • 评测
  • 测评结果:AC
  • 用时:4391ms
  • 内存:454936kb
  • [2023-02-02 01:25:57]
  • 提交

answer

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define SORT(a) sort(all(a));
#define REV(a) reverse(all(a));
#define SZ(a) int(a.size())
#define popcount(x) __builtin_popcountll(x)
#define pf push_front
#define pb push_back
#define ef emplace_front
#define eb emplace_back
#define ppf pop_front
#define ppb pop_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0);
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vlp = vector<LP>;
using vvlp = vector<vlp>;
template<class T>
using PQ = priority_queue<T>;
template<class T>
using PQrev = priority_queue<T, vector<T>, greater<T>>;

template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }

template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }

template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }

template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
    return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}

template<class T>
istream &operator>>(istream &is, vector<T> &v) {
    for (T &t: v) { is >> t; }
    return is;
}

template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const deque<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const set<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
ostream &operator<<(ostream &os, const multiset<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T, class U>
ostream &operator<<(ostream &os, const map<T, U> &mp) {
    os << '{';
    auto it = mp.begin();
    while (it != mp.end()) {
        os << (it == mp.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
void vecout(const vector<T> &v, char div = '\n') {
    rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}

template<class T>
bool constexpr chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool constexpr chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

void scan() {}

template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
    cin >> head;
    scan(tail...);
}

template<class T>
void print(const T &t) { cout << t << '\n'; }

template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

template<class... T>
void fin(const T &... a) {
    print(a...);
    exit(0);
}

template<class T>
vector<T> &operator+=(vector<T> &v, T x) {
    for (T &t: v) t += x;
    return v;
}

template<class T>
vector<T> &operator-=(vector<T> &v, T x) {
    for (T &t: v) t -= x;
    return v;
}

template<class T>
vector<T> &operator*=(vector<T> &v, T x) {
    for (T &t: v) t *= x;
    return v;
}

template<class T>
vector<T> &operator/=(vector<T> &v, T x) {
    for (T &t: v) t /= x;
    return v;
}

struct Init_io {
    Init_io() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        cout << boolalpha << fixed << setprecision(15);
        cerr << boolalpha << fixed << setprecision(15);
    }
} init_io;

const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;

void rearrange(const vi &) {}

template<class T, class... Tail>
void rearrange(const vi &ord, vector<T> &head, Tail &...tail) {
    assert(ord.size() == head.size());
    vector<T> ori = head;
    rep(i, ord.size()) head[i] = ori[ord[i]];
    rearrange(ord, tail...);
}

template<class T, class... Tail>
void sort_by(vector<T> &head, Tail &... tail) {
    vi ord(head.size());
    iota(all(ord), 0);
    sort(all(ord), [&](int i, int j) { return head[i] < head[j]; });
    rearrange(ord, head, tail...);
}

bool in_rect(int i, int j, int h, int w) {
    return 0 <= i and i < h and 0 <= j and j < w;
}

template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
    int n = v.size();
    vector<T> res;
    if (shift_one) {
        res.resize(n + 1);
        rep(i, n) res[i + 1] = res[i] + v[i];
    } else {
        res.resize(n);
        if (n) {
            res[0] = v[0];
            rep(i, 1, n) res[i] = res[i - 1] + v[i];
        }
    }
    return res;
}

vvi graph(int n, int m, bool directed = false, int origin = 1) {
    vvi G(n);
    rep(_, m) {
        INT(u, v);
        u -= origin, v -= origin;
        G[u].pb(v);
        if (!directed) G[v].pb(u);
    }
    return G;
}

template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
    vector<vector<pair<int, T>>> G(n);
    rep(_, m) {
        int u, v;
        T w;
        scan(u, v, w);
        u -= origin, v -= origin;
        G[u].eb(v, w);
        if (!directed) G[v].eb(u, w);
    }
    return G;
}

using ull = unsigned long long;

template<class T>
struct xor_basis {
    xor_basis(const vector<T> &init = {}) {
        for (T v: init) add(v);
    }
    
    vector<T> es;
    
    bool add(T v) {
        for (T e: es) {
            chmin(v, v ^ e);
            if (!v) break;
        }
        if (v) {
            es.pb(v);
            return true;
        }
        return false;
    }
    
    // max(min) {val^x | x \in span(es)}
    T get_max(T val = 0) {
        T res = val;
        for (T e: es) chmax(res, res ^ e);
        return res;
    }
    
    T get_min(T val) {
        T res = val;
        for (T e: es) chmin(res, res ^ e);
        return res;
    }
};

template<class D>
class rerooting {
    using T = typename D::T;
    
    int n;
    vvi tree;
    vi pi;
    vector<vector<T>> dp;
    vector<vector<T>> sumL, sumR;
    vector<T> ans;
    
    T dfs(int u = 0, int p = -1) {
        int sz = tree[u].size();
        dp[u].resize(sz);
        sumL[u].assign(sz + 1, D::id);
        sumR[u].assign(sz + 1, D::id);
        rep(i, sz) {
            int v = tree[u][i];
            if (v == p) {
                pi[u] = i;
                continue;
            }
            dp[u][i] = D::add_root(dfs(v, u), u, v);
        }
        if (pi[u] == -1) {
            rep(i, sz) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
            rrep(i, sz) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
            return sumL[u][sz];
        } else {
            rep(i, pi[u]) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
            rrep(i, sz, pi[u] + 1) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
            return D::merge(sumL[u][pi[u]], sumR[u][pi[u] + 1]);
        }
    }
    
    void dfs2(const T &dpP, int u = 0, int p = -1) {
        int sz = tree[u].size();
        if (pi[u] != -1) {
            dp[u][pi[u]] = D::add_root(dpP, u, p);
            rep(i, pi[u], sz) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
            rrep(i, pi[u] + 1) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
        }
        ans[u] = D::add_root(sumL[u][sz], -1, u);
        rep(i, sz) {
            int v = tree[u][i];
            if (v == p) continue;
            dfs2(D::merge(sumL[u][i], sumR[u][i + 1]), v, u);
        }
    }

public:
    explicit rerooting(const vvi &tree) : n(tree.size()), tree(tree), pi(n, -1), dp(n), sumL(n), sumR(n), ans(n) {
        dfs();
        dfs2(D::id);
    };
    
    T get_ans(int i) { return ans[i]; }
};

vector<xor_basis<ull>> basis;

class D {
public:
    using T = vector<pair<int, ull>>;
    
    static T id;
    
    static T merge(const T &l, const T &r) {
        int li = 0, ri = 0;
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        while (li < SZ(l) or ri < SZ(r)) {
            if (SZ(res) == 64) break;
            if (li < SZ(l) and ri < SZ(r)) {
                if (l[li].first <= r[ri].first) add(l[li++]);
                else add(r[ri++]);
            } else if (li < SZ(l)) {
                add(l[li++]);
            } else {
                add(r[ri++]);
            }
        }
        return res;
    }
    
    // u -> v, v が root
    static T add_root(const T &x, int u, int v) {
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        for (ull e: basis[v].es) res.eb(0, e);
        for (auto [d, t]: x) {
            if (SZ(res) == 64) break;
            add({d + 1, t});
        }
        return res;
    }
};

D::T D::id = {};

// originally written by maspy (https://maspypy.github.io/library/linalg/xor/solve_linear_xor.hpp)
// Ax = b を解く。[0] に特殊解、[1]~ に Ker A の基底が入る。解なしは empty。
// A の行ベクトルを UINT で持たせる。
template<typename UINT>
vector<UINT> solve_linear_xor(int n, int m, vector<UINT> A, UINT b) {
    assert(max(n, m) <= numeric_limits<UINT>::digits);
    assert(SZ(A) == n);
    
    int rk = 0;
    rep(j, m) {
        if (rk == n) break;
        rep(i, rk, n) if (A[i] >> j & 1) {
                if (i == rk) break;
                swap(A[rk], A[i]);
                if ((b >> rk & 1) != (b >> i & 1)) b ^= (UINT(1) << rk) | (UINT(1) << i);
                break;
            }
        if (!(A[rk] >> j & 1)) continue;
        rep(i, n) if (i != rk) {
                if (A[i] >> j & 1) {
                    A[i] ^= A[rk];
                    b ^= (b >> rk & 1) << i;
                }
            }
        ++rk;
    }
    if (b >> rk) return {};
    vector<UINT> res(1);
    vector<int> pivot(m, -1);
    int p = 0;
    rep(i, rk) {
        while (!(A[i] >> p & 1)) ++p;
        res[0] |= (b >> i & 1) << p;
        pivot[p] = i;
    }
    rep(j, m) if (pivot[j] == -1) {
            UINT x = 0;
            x |= UINT(1) << j;
            rep(k, j) if (pivot[k] != -1 && (A[pivot[k]] >> j & 1)) {
                    x |= UINT(1) << k;
                }
            res.eb(x);
        }
    return res;
}

int main() {
//    clock_t st = clock();
    INT(n);
    vvi G(n);
    rep(i, 1, n) {
        INT(p);
        --p;
        G[p].pb(i);
        G[i].pb(p);
    }
    basis.resize(n);
    rep(i, n) {
        INT(m);
        vector<ull> x(m);
        scan(x);
        x = xor_basis<ull>(x).es;
        x = solve_linear_xor(SZ(x), 64, x, 0ull);
        rep(j, 1, SZ(x)) basis[i].add(x[j]);
    }
    rerooting<D> rt(G);
//    double elp = double(clock() - st) / CLOCKS_PER_SEC * 1000;
//    assert(elp <= 2800);
    rep(i, n) {
        auto v = rt.get_ans(i);
        vector<ull> a, b(64);
        rep(j, 64) b[j] = 1ull << j;
        vb used(64);
        for (auto [_, t]: v) {
            a.pb(t);
            used[63 - __builtin_clzll(t)] = true;
        }
        rep(j, 64) if (!used[j]) a.pb(1ull << j);
        // 逆行列の計算
        rep(j, 64) {
            int piv = -1;
            rep(k, j, 64) if (a[k] >> j & 1) {
                    piv = k;
                    break;
                }
            assert(piv != -1);
            swap(a[j], a[piv]);
            swap(b[j], b[piv]);
            rep(k, 64) {
                if (k == j) continue;
                if (a[k] >> j & 1) {
                    a[k] ^= a[j];
                    b[k] ^= b[j];
                }
            }
        }
        {
            vector<ull> nb(64);
            rep(j, 64) rep(k, 64) {
                    if (b[j] >> k & 1) {
                        nb[63 - k] |= 1ull << j;
                    }
                }
            swap(b, nb);
        }
        xor_basis<ull> now;
        rep(j, 64 - SZ(v)) now.add(b[j]);
        ull ans = 0;
        int r = n;
        rrep(j, SZ(v)) {
            auto [d, _] = v[j];
            if (d < r) ans += now.get_max() * (r - d);
            r = d;
            now.add(b[63 - j]);
        }
        if (r) ans += now.get_max() * r;
        print(ans);
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3356kb

input:

2
1
2 2 3
2 1 1

output:

4
2

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 2ms
memory: 3384kb

input:

5
1 2 2 3
3 83 75 58
4 125 124 58 16
4 39 125 71 112
3 69 66 5
4 48 73 69 6

output:

171
125
183
142
243

result:

ok 5 lines

Test #3:

score: 0
Accepted
time: 2ms
memory: 3360kb

input:

2
1
0
0

output:

0
0

result:

ok 2 lines

Test #4:

score: 0
Accepted
time: 40ms
memory: 6740kb

input:

500
1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...

output:

18434153946472599289
17931933346714042066
17916198204903720383
17916198204176061148
17931933346710961779
18445169471807930489
17931926407666058065
18445169471807930348
17931933346714042064
17916198204176061019
18445169471807930488
18446738828973977865
17916198204176061018
17931926407666058064
184467...

result:

ok 500 lines

Test #5:

score: 0
Accepted
time: 3571ms
memory: 389968kb

input:

49999
1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...

output:

18446744063446965319
18316893942693974299
18446744073709548919
18355577725686532847
18446744073709551614
18446744073709551615
18446744073709551614
18446744073709551615
18446736549671322125
12348860911474380074
18446744072601433415
18446744073709551615
17335313836902106838
18446744073709551576
184467...

result:

ok 49999 lines

Test #6:

score: 0
Accepted
time: 3763ms
memory: 387096kb

input:

50000
1 1 1 2 2 2 3 4 4 5 5 5 6 6 8 8 8 8 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14 14 15 15 15 16 18 18 19 19 20 20 20 20 21 23 24 24 24 24 26 26 27 27 28 29 29 29 30 30 30 31 31 32 32 32 32 33 33 33 34 34 35 35 36 36 36 36 37 38 38 38 38 39 39 39 40 41 42 43 44 44 45 45 45 46 46 47 47 47 47 47 48 4...

output:

17388026687988753207
18446123107769912009
18433598785516292263
18446483694069646475
18446744073700722557
18446743950305151556
18446123107769912008
18446170606667738311
18446744071353497819
18446744065870877991
18446744073709531050
18446744073709231216
18446546425974411728
18446744073709533965
184467...

result:

ok 50000 lines

Test #7:

score: 0
Accepted
time: 2401ms
memory: 369916kb

input:

50000
1 1 3 4 5 6 5 7 3 10 6 12 12 12 5 8 17 4 19 20 17 22 22 22 25 25 27 27 28 22 31 31 31 34 34 35 37 38 38 40 41 42 43 42 44 46 40 42 47 50 50 40 53 41 42 56 57 58 59 59 61 62 59 64 65 65 59 61 69 62 71 72 73 72 72 74 58 62 79 80 79 82 74 84 84 84 46 72 89 90 90 34 93 94 94 96 94 95 95 100 101 10...

output:

68374895075
72669862370
64079927780
59784960485
55489993190
59784959085
64079926378
51195028691
68374893673
68374895075
72669862370
64079926376
68374893671
68374893671
68374893671
59784960485
46900064818
51195032113
64079927780
68374895075
72669862370
42605100943
46900068238
46900068216
46900068238
...

result:

ok 50000 lines

Test #8:

score: 0
Accepted
time: 1523ms
memory: 142864kb

input:

25000
1 2 3 4 3 3 1 7 4 5 8 8 6 5 6 12 10 5 13 16 1 11 9 22 2 26 7 15 10 9 18 11 14 27 35 30 6 38 20 37 14 28 9 12 29 19 16 17 17 25 51 52 23 24 45 56 17 33 31 32 13 62 21 33 18 5 67 20 41 58 61 34 31 19 25 28 75 76 24 23 27 36 19 6 85 15 14 50 49 54 29 81 23 79 32 82 97 53 40 42 66 46 30 78 40 43 8...

output:

18446744070444123456
18446744051208917090
18446744073687263354
18446744073709551561
18446742841285205723
18446175471565024345
18446744041357423475
18371821048696416150
18446743733103011459
18446744058754418143
18446744073615083416
18438543872624704476
18428215314831608530
18146245131772760630
184467...

result:

ok 25000 lines

Test #9:

score: 0
Accepted
time: 1546ms
memory: 407468kb

input:

50000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 50000 lines

Test #10:

score: 0
Accepted
time: 2831ms
memory: 407312kb

input:

50000
1 2 2 4 5 6 7 8 8 10 10 11 9 14 15 15 16 18 19 13 20 22 22 21 25 26 27 28 28 4 31 32 32 34 35 36 37 38 39 40 37 42 43 44 45 45 40 48 49 50 49 52 52 41 55 55 57 56 38 60 61 62 63 64 63 50 48 68 69 69 62 72 73 72 75 68 77 56 19 44 81 82 83 82 83 61 87 87 89 90 89 92 18 94 95 96 94 98 99 96 95 10...

output:

18446744073709551601
18446744073709551602
18446744073709551603
18446744073709551603
18446744073709551604
18446744073709551605
18446744073709551606
18446744073709551607
18446744073709551608
18446744073709551608
18446744073709551609
18446744073709551607
18446744073709551610
18446744073709551609
184467...

result:

ok 50000 lines

Test #11:

score: 0
Accepted
time: 2929ms
memory: 425624kb

input:

50000
1 1 3 4 5 2 7 8 6 9 11 12 10 14 13 15 16 17 18 19 21 20 22 24 23 25 27 26 28 30 31 32 33 34 29 35 37 36 38 40 41 39 42 44 43 45 46 48 47 50 49 52 53 51 55 56 54 57 58 59 60 62 61 64 65 66 67 68 69 70 63 71 72 74 73 76 75 78 77 79 80 81 82 83 84 85 86 87 88 89 90 92 91 93 94 96 97 98 95 99 101 ...

output:

18367844186012628696
18367842430297867877
18367845941602017631
18367847696870482250
18367849452065176591
18367851207243104606
18367840674674503782
18367838919205517572
18367837164020295681
18367852674316374835
18367835408823989376
18367833653098428815
18367831897383952668
18367854141296903375
183678...

result:

ok 50000 lines

Test #12:

score: 0
Accepted
time: 4391ms
memory: 425880kb

input:

50000
1 2 1 4 5 6 7 8 9 10 3 12 13 14 15 16 17 18 19 20 21 11 23 24 22 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 25 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...

output:

11830693669206161426
15555323927066560228
835488532647364820
7363753604854029059
2894535118950984022
16874499773021899126
12292344295621663824
2102496437386641629
10354835809796005713
162709530062143497
8417327324005152592
4562471278575433430
8264626372817797937
11957077303114769622
1557751198611634...

result:

ok 50000 lines

Test #13:

score: 0
Accepted
time: 4123ms
memory: 425932kb

input:

50000
1 2 1 3 5 6 4 8 9 7 11 10 13 14 12 15 16 18 17 20 21 19 22 23 24 26 27 25 28 30 29 31 32 33 35 36 34 38 37 40 39 41 43 42 45 46 47 48 49 50 51 52 44 53 55 56 57 58 59 54 61 62 63 60 65 66 67 64 68 70 71 72 73 69 74 75 76 78 77 80 81 82 83 84 79 86 85 87 89 88 90 91 93 94 92 95 96 98 99 100 101...

output:

16810415591965710206
5275813827366931639
12187956060199693517
9898273769935206067
653336450317114274
7565460974601185858
14477586125848329007
2986131906626164386
14520727293949990938
7608579144925250248
2942966458731584974
9855075192825865421
696430430531850340
12231025207124581077
53188757511752785...

result:

ok 50000 lines

Test #14:

score: 0
Accepted
time: 2181ms
memory: 279412kb

input:

31313
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

1518477777710383951
3446880237630672556
5375282697550961161
7303685157471249766
9232087617391538371
11160490077311826976
13088892537232115581
15017294997152404186
17030136166604856930
601970532795349017
2691592330956422031
4794695333535720614
6898050158530892320
9002503327771076773
11106956497011261...

result:

ok 31313 lines

Test #15:

score: 0
Accepted
time: 1699ms
memory: 279360kb

input:

31313
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
184467...

result:

ok 31313 lines

Test #16:

score: 0
Accepted
time: 2254ms
memory: 284648kb

input:

31808
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
184467...

result:

ok 31808 lines

Test #17:

score: 0
Accepted
time: 3529ms
memory: 454936kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

15658173558095990214
15658173558095998555
15658173558123845005
15658173613076015572
15658365411239272757
2992667818252910683
10515380727096854521
3329056206310134596
14672528822163917116
9835783189211567135
5009729745968077358
256541647148705941
13954274486084260192
9213163634610566161
4448012011035...

result:

ok 50000 lines

Test #18:

score: 0
Accepted
time: 3181ms
memory: 454424kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

3246770574180091123
3246770574180091711
3246770574180125502
3246770574453894763
3246770575019028530
3246770714638951845
3247334863522250449
3411114883517164810
4193641964412498082
7329436606616368233
10534871863271214916
13810895930625513148
17721984031988561169
2040728658901769657
53817324955790019...

result:

ok 50000 lines

Test #19:

score: 0
Accepted
time: 3349ms
memory: 454652kb

input:

49997
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

13879803950673289380
13879803950673289550
13879803950673290782
13879803950673337110
13879803950674407795
13879803950684809701
13879805197930577641
13879826482644923358
13880629738256442364
14134093906395557353
18271507277841796526
13123553568911009498
11270183798612905609
8551213401850783051
6812615...

result:

ok 49997 lines

Test #20:

score: 0
Accepted
time: 3075ms
memory: 454400kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

10009788994307399163
10009788994307399196
10009788994307415900
10009788994307449079
10009788994307488500
10009788994307894593
10009788994342827120
10009788994409580461
10009789000039109023
10009789005302384418
10009790334413012985
10010155466478437881
10019568939069498282
10040873119747734210
118085...

result:

ok 50000 lines

Test #21:

score: 0
Accepted
time: 3357ms
memory: 454660kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

8197127906950493607
8197127906950493704
8197127906950493809
8197127906950494665
8197127906950503630
8197127906950513290
8197127906950519905
8197127906950710769
8197127906950751282
8197127906962741333
8197127906986143082
8197127907194345995
8197127918832372618
8197128059899073438
8197147004157338209
...

result:

ok 50000 lines

Test #22:

score: 0
Accepted
time: 3112ms
memory: 454704kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

16883289287632485302
16883289287632485327
16883289287632486340
16883289287632486927
16883289287632487548
16883289287632488988
16883289287632491299
16883289287632569146
16883289287633014313
16883289287634010799
16883289287634081426
16883289289172254193
16883289361917645643
16883289435296772772
168832...

result:

ok 50000 lines

Test #23:

score: 0
Accepted
time: 2552ms
memory: 411844kb

input:

50000
1 2 3 4 5 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6 34 35 36 37 38 39 40 33 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...

output:

8906255203496761589
7263517325311258982
5620779447125756375
3978041568940253768
2335303690754751161
692565812569248554
10548993081682264196
12191730959867766803
13834468838053269410
15477206716238772017
17119944594424274624
315938398900225615
1958676277085728222
3601414155271230829
52441520334567334...

result:

ok 50000 lines

Test #24:

score: 0
Accepted
time: 3484ms
memory: 344892kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

10505887253194632628
10505887253199649163
10505887253204665698
10505887253209682233
10505887253214698768
10505887253219715303
10505887253224731838
10505887253229748373
10505887253234764908
10505887253239781443
10505887253244797978
10505887253249814513
10505887253254831048
10505887253259847583
105058...

result:

ok 50000 lines

Test #25:

score: 0
Accepted
time: 2541ms
memory: 348032kb

input:

50000
1 1 1 1 2 2 2 3 3 4 4 4 4 4 4 4 7 8 8 10 10 11 13 13 13 15 15 15 16 16 17 18 18 19 19 21 21 22 24 24 25 26 26 27 29 29 29 31 32 33 33 34 34 36 39 39 39 40 41 41 42 43 43 44 45 45 49 52 55 56 58 58 60 60 60 60 62 62 63 64 64 66 68 70 72 76 77 78 78 80 80 81 82 82 83 84 85 85 86 88 88 90 92 93 9...

output:

4737593169765558208
15134494603825587080
12787435809415080952
15134494603825587080
15134494603825587080
7084651964176064336
7084651964176064336
7084651964176064336
4737593169765558208
2390534375355052080
7084651964176064336
7084651964176064336
7084651964176064336
7084651964176064336
7084651964176064...

result:

ok 50000 lines

Test #26:

score: 0
Accepted
time: 2566ms
memory: 344560kb

input:

50000
1 1 3 4 5 6 7 7 9 10 4 12 11 14 15 16 15 18 19 18 21 21 23 23 22 9 13 28 29 30 31 11 27 34 35 36 37 37 35 40 40 39 43 42 45 46 46 41 49 43 39 38 53 17 50 2 57 57 59 60 61 61 63 59 65 66 67 68 69 70 71 72 73 72 75 76 74 78 77 68 81 82 82 84 85 86 86 87 89 83 91 92 93 94 85 81 97 98 99 100 100 1...

output:

18446156882414553476
18446744071320896184
18444947032707026718
18444946976966471873
18444946976363343971
18444946975822193856
18444946975794333871
18444946975766473886
18444946975778144560
18444946975761955249
18444946975745765938
18444946970557712772
18444946969840748104
18444946975729576627
184449...

result:

ok 50000 lines

Test #27:

score: 0
Accepted
time: 2420ms
memory: 357304kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

15357665124154983412
15357665124163302249
15357665124171621086
15357665124179939923
15357665124188258760
15357665124196577597
15357665124204896434
15357665124213215271
15357665124221534108
15357665124229852945
15357665124238171782
15357665124246490619
15357665124254809456
15357665124263128293
153576...

result:

ok 50000 lines

Test #28:

score: 0
Accepted
time: 2609ms
memory: 344628kb

input:

50000
1 2 3 4 5 6 7 8 9 10 10 10 13 12 10 10 17 10 10 20 21 15 19 11 25 23 24 28 29 30 31 16 33 34 35 36 37 38 39 40 41 41 41 43 41 46 41 41 49 50 51 52 53 54 55 48 26 58 59 60 41 45 63 64 65 66 67 10 69 47 71 72 27 74 42 76 77 78 14 80 81 82 83 62 85 70 87 88 89 90 44 92 93 94 95 96 97 98 99 100 10...

output:

16978346014626379089
16978346014627893800
16978346014629408511
16978346014630923222
16978346014632437933
16978346014633952644
16978346014635467355
16978346014636982066
16978346014638496777
16978346014640011488
13800810765581693289
16978344220397954045
17047785907924009580
16341238903432751054
169783...

result:

ok 50000 lines

Test #29:

score: 0
Accepted
time: 3112ms
memory: 346912kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

11115302636941690500
11115302636947119498
11115302636952548496
11115302636957977494
11115302636963406492
11115302636968835490
11115302636974264488
11115302636979693486
11115302636985122484
11115302636990551482
11115302636995980480
11115302637001409478
11115302637006838476
11115302637012267474
111153...

result:

ok 50000 lines

Test #30:

score: 0
Accepted
time: 2125ms
memory: 251400kb

input:

40000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26 27 28 29 10 31 32 33 34 35 36 37 38 39 10 41 42 43 44 45 46 47 48 49 10 51 52 53 54 55 56 57 58 59 10 61 62 63 64 65 66 67 68 69 10 71 72 73 74 75 76 77 78 79 10 81 82 83 84 85 86 87 88 89 10 91 92 93 94 95 96 97 98 99 10 101...

output:

14657845295672959170
14657845295672959274
14657845295672959378
14657845295672959482
14657845295672959586
14657845295672959690
14657845295672959794
14657845295672959898
14657845295672960002
14657845295672960106
18146929762413675894
13517288070671864653
10593708414547966432
8816878404747688229
1075607...

result:

ok 40000 lines