QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#74503 | #5445. Vulpecula | yuto1115 | RE | 52ms | 6728kb | C++17 | 14.2kb | 2023-02-02 00:54:31 | 2023-02-02 00:54:31 |
Judging History
answer
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define SORT(a) sort(all(a));
#define REV(a) reverse(all(a));
#define SZ(a) int(a.size())
#define popcount(x) __builtin_popcountll(x)
#define pf push_front
#define pb push_back
#define ef emplace_front
#define eb emplace_back
#define ppf pop_front
#define ppb pop_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0);
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vlp = vector<LP>;
using vvlp = vector<vlp>;
template<class T>
using PQ = priority_queue<T>;
template<class T>
using PQrev = priority_queue<T, vector<T>, greater<T>>;
template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }
template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }
template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }
template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}
template<class T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &t: v) { is >> t; }
return is;
}
template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
os << '[';
rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
return os << ']';
}
template<class T>
ostream &operator<<(ostream &os, const deque<T> &v) {
os << '[';
rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
return os << ']';
}
template<class T>
ostream &operator<<(ostream &os, const set<T> &st) {
os << '{';
auto it = st.begin();
while (it != st.end()) {
os << (it == st.begin() ? "" : ", ") << *it;
it++;
}
return os << '}';
}
template<class T>
ostream &operator<<(ostream &os, const multiset<T> &st) {
os << '{';
auto it = st.begin();
while (it != st.end()) {
os << (it == st.begin() ? "" : ", ") << *it;
it++;
}
return os << '}';
}
template<class T, class U>
ostream &operator<<(ostream &os, const map<T, U> &mp) {
os << '{';
auto it = mp.begin();
while (it != mp.end()) {
os << (it == mp.begin() ? "" : ", ") << *it;
it++;
}
return os << '}';
}
template<class T>
void vecout(const vector<T> &v, char div = '\n') {
rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}
template<class T>
bool constexpr chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T>
bool constexpr chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
void scan() {}
template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
cin >> head;
scan(tail...);
}
template<class T>
void print(const T &t) { cout << t << '\n'; }
template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
cout << head << ' ';
print(tail...);
}
template<class... T>
void fin(const T &... a) {
print(a...);
exit(0);
}
template<class T>
vector<T> &operator+=(vector<T> &v, T x) {
for (T &t: v) t += x;
return v;
}
template<class T>
vector<T> &operator-=(vector<T> &v, T x) {
for (T &t: v) t -= x;
return v;
}
template<class T>
vector<T> &operator*=(vector<T> &v, T x) {
for (T &t: v) t *= x;
return v;
}
template<class T>
vector<T> &operator/=(vector<T> &v, T x) {
for (T &t: v) t /= x;
return v;
}
struct Init_io {
Init_io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
cout << boolalpha << fixed << setprecision(15);
cerr << boolalpha << fixed << setprecision(15);
}
} init_io;
const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;
void rearrange(const vi &) {}
template<class T, class... Tail>
void rearrange(const vi &ord, vector<T> &head, Tail &...tail) {
assert(ord.size() == head.size());
vector<T> ori = head;
rep(i, ord.size()) head[i] = ori[ord[i]];
rearrange(ord, tail...);
}
template<class T, class... Tail>
void sort_by(vector<T> &head, Tail &... tail) {
vi ord(head.size());
iota(all(ord), 0);
sort(all(ord), [&](int i, int j) { return head[i] < head[j]; });
rearrange(ord, head, tail...);
}
bool in_rect(int i, int j, int h, int w) {
return 0 <= i and i < h and 0 <= j and j < w;
}
template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
int n = v.size();
vector<T> res;
if (shift_one) {
res.resize(n + 1);
rep(i, n) res[i + 1] = res[i] + v[i];
} else {
res.resize(n);
if (n) {
res[0] = v[0];
rep(i, 1, n) res[i] = res[i - 1] + v[i];
}
}
return res;
}
vvi graph(int n, int m, bool directed = false, int origin = 1) {
vvi G(n);
rep(_, m) {
INT(u, v);
u -= origin, v -= origin;
G[u].pb(v);
if (!directed) G[v].pb(u);
}
return G;
}
template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
vector<vector<pair<int, T>>> G(n);
rep(_, m) {
int u, v;
T w;
scan(u, v, w);
u -= origin, v -= origin;
G[u].eb(v, w);
if (!directed) G[v].eb(u, w);
}
return G;
}
using ull = unsigned long long;
// originally written by maspy (https://maspypy.github.io/library/linalg/xor/solve_linear_xor.hpp)
// Ax = b を解く。[0] に特殊解、[1]~ に Ker A の基底が入る。解なしは empty。
// A の行ベクトルを UINT で持たせる。
template<typename UINT>
vector<UINT> solve_linear_xor(int n, int m, vector<UINT> A, UINT b) {
assert(max(n, m) <= numeric_limits<UINT>::digits);
assert(SZ(A) == n);
int rk = 0;
rep(j, m) {
if (rk == n) break;
rep(i, rk, n) if (A[i] >> j & 1) {
if (i == rk) break;
swap(A[rk], A[i]);
if ((b >> rk & 1) != (b >> i & 1)) b ^= (UINT(1) << rk) | (UINT(1) << i);
break;
}
if (!(A[rk] >> j & 1)) continue;
rep(i, n) if (i != rk) {
if (A[i] >> j & 1) {
A[i] ^= A[rk];
b ^= (b >> rk & 1) << i;
}
}
++rk;
}
if (b >> rk) return {};
vector<UINT> res(1);
vector<int> pivot(m, -1);
int p = 0;
rep(i, rk) {
while (!(A[i] >> p & 1)) ++p;
res[0] |= (b >> i & 1) << p;
pivot[p] = i;
}
rep(j, m) if (pivot[j] == -1) {
UINT x = 0;
x |= UINT(1) << j;
rep(k, j) if (pivot[k] != -1 && (A[pivot[k]] >> j & 1)) {
x |= UINT(1) << k;
}
res.eb(x);
}
return res;
}
template<class D>
class rerooting {
using T = typename D::T;
int n;
vvi tree;
vi pi;
vector<vector<T>> dp;
vector<vector<T>> sumL, sumR;
vector<T> ans;
T dfs(int u = 0, int p = -1) {
int sz = tree[u].size();
dp[u].resize(sz);
sumL[u].assign(sz + 1, D::id);
sumR[u].assign(sz + 1, D::id);
rep(i, sz) {
int v = tree[u][i];
if (v == p) {
pi[u] = i;
continue;
}
dp[u][i] = D::add_root(dfs(v, u), u, v);
}
if (pi[u] == -1) {
rep(i, sz) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
rrep(i, sz) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
return sumL[u][sz];
} else {
rep(i, pi[u]) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
rrep(i, sz, pi[u] + 1) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
return D::merge(sumL[u][pi[u]], sumR[u][pi[u] + 1]);
}
}
void dfs2(const T &dpP, int u = 0, int p = -1) {
int sz = tree[u].size();
if (pi[u] != -1) {
dp[u][pi[u]] = D::add_root(dpP, u, p);
rep(i, pi[u], sz) sumL[u][i + 1] = D::merge(sumL[u][i], dp[u][i]);
rrep(i, pi[u] + 1) sumR[u][i] = D::merge(sumR[u][i + 1], dp[u][i]);
}
ans[u] = D::add_root(sumL[u][sz], -1, u);
rep(i, sz) {
int v = tree[u][i];
if (v == p) continue;
dfs2(D::merge(sumL[u][i], sumR[u][i + 1]), v, u);
}
}
public:
explicit rerooting(const vvi &tree) : n(tree.size()), tree(tree), pi(n, -1), dp(n), sumL(n), sumR(n), ans(n) {
dfs();
dfs2(D::id);
};
T get_ans(int i) { return ans[i]; }
};
vector<vector<ull>> es;
class D {
public:
using T = vector<pair<int, ull>>;
static T id;
static T merge(const T &l, const T &r) {
int li = 0, ri = 0;
T res;
auto add = [&](const pair<int, ull> &p) {
auto [d, t] = p;
for (auto [_, e]: res) chmin(t, t ^ e);
if (t) res.eb(d, t);
};
while (li < SZ(l) or ri < SZ(r)) {
if (SZ(res) == 64) break;
if (li < SZ(l) and ri < SZ(r)) {
if (l[li].first <= r[ri].first) add(l[li++]);
else add(r[ri++]);
} else if (li < SZ(l)) {
add(l[li++]);
} else {
add(r[ri++]);
}
}
return res;
}
// u -> v, v が root
static T add_root(const T &x, int u, int v) {
T res;
auto add = [&](const pair<int, ull> &p) {
auto [d, t] = p;
for (auto [_, e]: res) chmin(t, t ^ e);
if (t) res.eb(d, t);
};
for (ull e: es[v]) res.eb(0, e);
for (auto [d, t]: x) {
if (SZ(res) == 64) break;
add({d + 1, t});
}
return res;
}
};
D::T D::id = {};
int main() {
clock_t now = clock();
INT(n);
vvi G(n);
rep(i, 1, n) {
INT(p);
--p;
G[p].pb(i);
G[i].pb(p);
}
es.resize(n);
rep(i, n) {
INT(m);
vector<ull> x(m);
scan(x);
vector<ull> x2;
rep(j, SZ(x)) {
rep(k, j) chmin(x[j], x[j] ^ x[k]);
if (x[j]) x2.pb(x[j]);
}
x = solve_linear_xor(SZ(x2), 64, x2, 0ull);
x.erase(x.begin());
rep(j, SZ(x)) {
rep(k, j) chmin(x[j], x[j] ^ x[k]);
assert(x[j]);
}
es[i] = x;
}
rerooting<D> rt(G);
double elp = double(clock() - now) / CLOCKS_PER_SEC * 1000;
assert(elp <= 2500);
rep(i, n) {
auto v = rt.get_ans(i);
vector<ull> a, b(64);
rep(j, 64) b[j] = 1ull << j;
vb used(64);
for (auto [_, t]: v) {
a.pb(t);
used[63 - __builtin_clzll(t)] = true;
}
rep(j, 64) if (!used[j]) a.pb(1ull << j);
// 逆行列の計算
rep(j, 64) {
int piv = -1;
rep(k, j, 64) if (a[k] >> j & 1) {
piv = k;
break;
}
assert(piv != -1);
swap(a[j], a[piv]);
swap(b[j], b[piv]);
rep(k, 64) {
if (k == j) continue;
if (a[k] >> j & 1) {
a[k] ^= a[j];
b[k] ^= b[j];
}
}
}
{
vector<ull> nb(64);
rep(j, 64) rep(k, 64) {
if (b[j] >> k & 1) {
nb[63 - k] |= 1ull << j;
}
}
swap(b, nb);
}
rep(j, 64) {
rep(k, j) chmin(b[j], b[j] ^ b[k]);
assert(b[j]);
}
ull mx = 0;
rep(j, 64 - SZ(v)) chmax(mx, mx ^ b[j]);
ull ans = 0;
int r = n;
rrep(j, SZ(v)) {
auto [d, _] = v[j];
if (d < r) ans += mx * (r - d);
r = d;
chmax(mx, mx ^ b[63 - j]);
}
if (r) ans += mx * r;
print(ans);
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 3440kb
input:
2 1 2 2 3 2 1 1
output:
4 2
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 2ms
memory: 3576kb
input:
5 1 2 2 3 3 83 75 58 4 125 124 58 16 4 39 125 71 112 3 69 66 5 4 48 73 69 6
output:
171 125 183 142 243
result:
ok 5 lines
Test #3:
score: 0
Accepted
time: 2ms
memory: 3472kb
input:
2 1 0 0
output:
0 0
result:
ok 2 lines
Test #4:
score: 0
Accepted
time: 52ms
memory: 6728kb
input:
500 1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...
output:
18434153946472599289 17931933346714042066 17916198204903720383 17916198204176061148 17931933346710961779 18445169471807930489 17931926407666058065 18445169471807930348 17931933346714042064 17916198204176061019 18445169471807930488 18446738828973977865 17916198204176061018 17931926407666058064 184467...
result:
ok 500 lines
Test #5:
score: -100
Dangerous Syscalls
input:
49999 1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...