QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#74492#5445. Vulpeculayuto1115TL 3808ms175024kbC++1713.5kb2023-02-01 23:44:482023-02-01 23:44:51

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-02-01 23:44:51]
  • 评测
  • 测评结果:TL
  • 用时:3808ms
  • 内存:175024kb
  • [2023-02-01 23:44:48]
  • 提交

answer

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define SORT(a) sort(all(a));
#define REV(a) reverse(all(a));
#define SZ(a) int(a.size())
#define popcount(x) __builtin_popcountll(x)
#define pf push_front
#define pb push_back
#define ef emplace_front
#define eb emplace_back
#define ppf pop_front
#define ppb pop_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0);
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vlp = vector<LP>;
using vvlp = vector<vlp>;
template<class T>
using PQ = priority_queue<T>;
template<class T>
using PQrev = priority_queue<T, vector<T>, greater<T>>;

template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }

template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }

template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }

template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
    return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}

template<class T>
istream &operator>>(istream &is, vector<T> &v) {
    for (T &t: v) { is >> t; }
    return is;
}

template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const deque<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const set<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
ostream &operator<<(ostream &os, const multiset<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T, class U>
ostream &operator<<(ostream &os, const map<T, U> &mp) {
    os << '{';
    auto it = mp.begin();
    while (it != mp.end()) {
        os << (it == mp.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
void vecout(const vector<T> &v, char div = '\n') {
    rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}

template<class T>
bool constexpr chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool constexpr chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

void scan() {}

template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
    cin >> head;
    scan(tail...);
}

template<class T>
void print(const T &t) { cout << t << '\n'; }

template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

template<class... T>
void fin(const T &... a) {
    print(a...);
    exit(0);
}

template<class T>
vector<T> &operator+=(vector<T> &v, T x) {
    for (T &t: v) t += x;
    return v;
}

template<class T>
vector<T> &operator-=(vector<T> &v, T x) {
    for (T &t: v) t -= x;
    return v;
}

template<class T>
vector<T> &operator*=(vector<T> &v, T x) {
    for (T &t: v) t *= x;
    return v;
}

template<class T>
vector<T> &operator/=(vector<T> &v, T x) {
    for (T &t: v) t /= x;
    return v;
}

struct Init_io {
    Init_io() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        cout << boolalpha << fixed << setprecision(15);
        cerr << boolalpha << fixed << setprecision(15);
    }
} init_io;

const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;

void rearrange(const vi &) {}

template<class T, class... Tail>
void rearrange(const vi &ord, vector<T> &head, Tail &...tail) {
    assert(ord.size() == head.size());
    vector<T> ori = head;
    rep(i, ord.size()) head[i] = ori[ord[i]];
    rearrange(ord, tail...);
}

template<class T, class... Tail>
void sort_by(vector<T> &head, Tail &... tail) {
    vi ord(head.size());
    iota(all(ord), 0);
    sort(all(ord), [&](int i, int j) { return head[i] < head[j]; });
    rearrange(ord, head, tail...);
}

bool in_rect(int i, int j, int h, int w) {
    return 0 <= i and i < h and 0 <= j and j < w;
}

template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
    int n = v.size();
    vector<T> res;
    if (shift_one) {
        res.resize(n + 1);
        rep(i, n) res[i + 1] = res[i] + v[i];
    } else {
        res.resize(n);
        if (n) {
            res[0] = v[0];
            rep(i, 1, n) res[i] = res[i - 1] + v[i];
        }
    }
    return res;
}

vvi graph(int n, int m, bool directed = false, int origin = 1) {
    vvi G(n);
    rep(_, m) {
        INT(u, v);
        u -= origin, v -= origin;
        G[u].pb(v);
        if (!directed) G[v].pb(u);
    }
    return G;
}

template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
    vector<vector<pair<int, T>>> G(n);
    rep(_, m) {
        int u, v;
        T w;
        scan(u, v, w);
        u -= origin, v -= origin;
        G[u].eb(v, w);
        if (!directed) G[v].eb(u, w);
    }
    return G;
}

using ull = unsigned long long;

// originally written by maspy (https://maspypy.github.io/library/linalg/xor/solve_linear_xor.hpp)
// Ax = b を解く。[0] に特殊解、[1]~ に Ker A の基底が入る。解なしは empty。
// A の行ベクトルを UINT で持たせる。
template<typename UINT>
vector<UINT> solve_linear_xor(int n, int m, vector<UINT> A, UINT b) {
    assert(max(n, m) <= numeric_limits<UINT>::digits);
    assert(SZ(A) == n);
    
    int rk = 0;
    rep(j, m) {
        if (rk == n) break;
        rep(i, rk, n) if (A[i] >> j & 1) {
                if (i == rk) break;
                swap(A[rk], A[i]);
                if ((b >> rk & 1) != (b >> i & 1)) b ^= (UINT(1) << rk) | (UINT(1) << i);
                break;
            }
        if (!(A[rk] >> j & 1)) continue;
        rep(i, n) if (i != rk) {
                if (A[i] >> j & 1) {
                    A[i] ^= A[rk];
                    b ^= (b >> rk & 1) << i;
                }
            }
        ++rk;
    }
    if (b >> rk) return {};
    vector<UINT> res(1);
    vector<int> pivot(m, -1);
    int p = 0;
    rep(i, rk) {
        while (!(A[i] >> p & 1)) ++p;
        res[0] |= (b >> i & 1) << p;
        pivot[p] = i;
    }
    rep(j, m) if (pivot[j] == -1) {
            UINT x = 0;
            x |= UINT(1) << j;
            rep(k, j) if (pivot[k] != -1 && (A[pivot[k]] >> j & 1)) {
                    x |= UINT(1) << k;
                }
            res.eb(x);
        }
    return res;
}

template<class D>
class rerooting {
    using T = typename D::T;
    
    int n;
    vvi tree;
    vector<vector<T>> dp;
    vector<T> ans;
    
    T dfs(int u = 0, int p = -1) {
        T sum = D::id;
        dp[u].resize(tree[u].size());
        rep(i, tree[u].size()) {
            int v = tree[u][i];
            if (v == p) continue;
            dp[u][i] = D::add_root(dfs(v, u), u, v);
            sum = D::merge(sum, dp[u][i]);
        }
        return sum;
    }
    
    void dfs2(const T &dpP, int u = 0, int p = -1) {
        int sz = tree[u].size();
        rep(i, sz) if (tree[u][i] == p) dp[u][i] = D::add_root(dpP, u, p);
        vector<T> sumL(sz + 1, D::id), sumR(sz + 1, D::id);
        rep(i, sz) sumL[i + 1] = D::merge(sumL[i], dp[u][i]);
        rrep(i, sz) sumR[i] = D::merge(sumR[i + 1], dp[u][i]);
        ans[u] = D::add_root(sumL[sz], -1, u);
        rep(i, sz) {
            int v = tree[u][i];
            if (v == p) continue;
            dfs2(D::merge(sumL[i], sumR[i + 1]), v, u);
        }
    }

public:
    explicit rerooting(const vvi &tree) : n(tree.size()), tree(tree), dp(n), ans(n) {
        dfs();
        dfs2(D::id);
    };
    
    T get_ans(int i) { return ans[i]; }
};

vector<vector<ull>> es;

class D {
public:
    using T = vector<pair<int, ull>>;
    
    static T id;
    
    static T merge(const T &l, const T &r) {
        int li = 0, ri = 0;
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        while (li < SZ(l) or ri < SZ(r)) {
            if (SZ(res) == 64) break;
            if (li < SZ(l) and ri < SZ(r)) {
                if (l[li].first <= r[ri].first) add(l[li++]);
                else add(r[ri++]);
            } else if (li < SZ(l)) {
                add(l[li++]);
            } else {
                add(r[ri++]);
            }
        }
        return res;
    }
    
    // u -> v, v が root
    static T add_root(const T &x, int u, int v) {
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        for (ull e: es[v]) res.eb(0, e);
        for (auto [d, t]: x) {
            if (SZ(res) == 64) break;
            add({d + 1, t});
        }
        return res;
    }
};

D::T D::id = {};

int main() {
    INT(n);
    vvi G(n);
    rep(i, 1, n) {
        INT(p);
        --p;
        G[p].pb(i);
        G[i].pb(p);
    }
    es.resize(n);
    rep(i, n) {
        INT(m);
        vector<ull> x(m);
        scan(x);
        vector<ull> x2;
        rep(j, SZ(x)) {
            rep(k, j) chmin(x[j], x[j] ^ x[k]);
            if (x[j]) x2.pb(x[j]);
        }
        x = solve_linear_xor(SZ(x2), 64, x2, 0ull);
        x.erase(x.begin());
        rep(j, SZ(x)) {
            rep(k, j) chmin(x[j], x[j] ^ x[k]);
            assert(x[j]);
        }
        es[i] = x;
    }
    rerooting<D> rt(G);
    rep(i, n) {
        auto v = rt.get_ans(i);
        vector<ull> a, b(64);
        rep(j, 64) b[j] = 1ull << j;
        vb used(64);
        for (auto [_, t]: v) {
            a.pb(t);
            used[63 - __builtin_clzll(t)] = true;
        }
        rep(j, 64) if (!used[j]) a.pb(1ull << j);
        // 逆行列の計算
        rep(j, 64) {
            int piv = -1;
            rep(k, j, 64) if (a[k] >> j & 1) piv = k;
            assert(piv != -1);
            swap(a[j], a[piv]);
            swap(b[j], b[piv]);
            rep(k, 64) {
                if (k == j) continue;
                if (a[k] >> j & 1) {
                    a[k] ^= a[j];
                    b[k] ^= b[j];
                }
            }
        }
        {
            vector<ull> nb(64);
            rep(j, 64) rep(k, 64) {
                    if (b[j] >> k & 1) {
                        nb[63 - k] |= 1ull << j;
                    }
                }
            swap(b, nb);
        }
        rep(j, 64) {
            rep(k, j) chmin(b[j], b[j] ^ b[k]);
            assert(b[j]);
        }
        ull mx = 0;
        rep(j, 64 - SZ(v)) chmax(mx, mx ^ b[j]);
        ull ans = 0;
        int r = n;
        rrep(j, SZ(v)) {
            auto [d, _] = v[j];
            if (d < r) ans += mx * (r - d);
            r = d;
            chmax(mx, mx ^ b[63 - j]);
        }
        if (r) ans += mx * r;
        print(ans);
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 3392kb

input:

2
1
2 2 3
2 1 1

output:

4
2

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 2ms
memory: 3392kb

input:

5
1 2 2 3
3 83 75 58
4 125 124 58 16
4 39 125 71 112
3 69 66 5
4 48 73 69 6

output:

171
125
183
142
243

result:

ok 5 lines

Test #3:

score: 0
Accepted
time: 1ms
memory: 3400kb

input:

2
1
0
0

output:

0
0

result:

ok 2 lines

Test #4:

score: 0
Accepted
time: 46ms
memory: 4884kb

input:

500
1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...

output:

18434153946472599289
17931933346714042066
17916198204903720383
17916198204176061148
17931933346710961779
18445169471807930489
17931926407666058065
18445169471807930348
17931933346714042064
17916198204176061019
18445169471807930488
18446738828973977865
17916198204176061018
17931926407666058064
184467...

result:

ok 500 lines

Test #5:

score: 0
Accepted
time: 3523ms
memory: 175024kb

input:

49999
1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...

output:

18446744063446965319
18316893942693974299
18446744073709548919
18355577725686532847
18446744073709551614
18446744073709551615
18446744073709551614
18446744073709551615
18446736549671322125
12348860911474380074
18446744072601433415
18446744073709551615
17335313836902106838
18446744073709551576
184467...

result:

ok 49999 lines

Test #6:

score: 0
Accepted
time: 3808ms
memory: 172684kb

input:

50000
1 1 1 2 2 2 3 4 4 5 5 5 6 6 8 8 8 8 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14 14 15 15 15 16 18 18 19 19 20 20 20 20 21 23 24 24 24 24 26 26 27 27 28 29 29 29 30 30 30 31 31 32 32 32 32 33 33 33 34 34 35 35 36 36 36 36 37 38 38 38 38 39 39 39 40 41 42 43 44 44 45 45 45 46 46 47 47 47 47 47 48 4...

output:

17388026687988753207
18446123107769912009
18433598785516292263
18446483694069646475
18446744073700722557
18446743950305151556
18446123107769912008
18446170606667738311
18446744071353497819
18446744065870877991
18446744073709531050
18446744073709231216
18446546425974411728
18446744073709533965
184467...

result:

ok 50000 lines

Test #7:

score: 0
Accepted
time: 2531ms
memory: 166120kb

input:

50000
1 1 3 4 5 6 5 7 3 10 6 12 12 12 5 8 17 4 19 20 17 22 22 22 25 25 27 27 28 22 31 31 31 34 34 35 37 38 38 40 41 42 43 42 44 46 40 42 47 50 50 40 53 41 42 56 57 58 59 59 61 62 59 64 65 65 59 61 69 62 71 72 73 72 72 74 58 62 79 80 79 82 74 84 84 84 46 72 89 90 90 34 93 94 94 96 94 95 95 100 101 10...

output:

68374895075
72669862370
64079927780
59784960485
55489993190
59784959085
64079926378
51195028691
68374893673
68374895075
72669862370
64079926376
68374893671
68374893671
68374893671
59784960485
46900064818
51195032113
64079927780
68374895075
72669862370
42605100943
46900068238
46900068216
46900068238
...

result:

ok 50000 lines

Test #8:

score: 0
Accepted
time: 1529ms
memory: 60448kb

input:

25000
1 2 3 4 3 3 1 7 4 5 8 8 6 5 6 12 10 5 13 16 1 11 9 22 2 26 7 15 10 9 18 11 14 27 35 30 6 38 20 37 14 28 9 12 29 19 16 17 17 25 51 52 23 24 45 56 17 33 31 32 13 62 21 33 18 5 67 20 41 58 61 34 31 19 25 28 75 76 24 23 27 36 19 6 85 15 14 50 49 54 29 81 23 79 32 82 97 53 40 42 66 46 30 78 40 43 8...

output:

18446744070444123456
18446744051208917090
18446744073687263354
18446744073709551561
18446742841285205723
18446175471565024345
18446744041357423475
18371821048696416150
18446743733103011459
18446744058754418143
18446744073615083416
18438543872624704476
18428215314831608530
18146245131772760630
184467...

result:

ok 25000 lines

Test #9:

score: -100
Time Limit Exceeded

input:

50000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

output:


result: