QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#744677 | #9614. 分治 | hos_lyric | 100 ✓ | 1728ms | 17716kb | C++14 | 9.8kb | 2024-11-13 22:48:37 | 2024-11-13 22:48:37 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
constexpr int LIM_INV = 400'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
Mint two[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
two[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
two[i] = two[i - 1] * 2;
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
////////////////////////////////////////////////////////////////////////////////
/*
0: ceil child
1: floor child
ex. N = 11 = 1011(2):
0000
0001
001
0100
0101
011
1000
1001
101
110
111
reversed:
0000
0001
0010
100
101
110
111
1000
1001
1010
2^(L-1) <= N < 2^L
reversed:
[0, N - 2^(L-1)) in L bits
[N - 2^(L-1), 2^(L-1)) in (L-1) bits
[2^(L-1), N) in L bits
ans = \sum (1 + (longest contiguous 0))
= N + \sum[1<=k<=L] \sum [longest >= k]
= N + \sum[1<=k<=L] (N - \sum [longest < k])
[N - 2^(L-1), 2^(L-1)) and [2^(L-1), N): same as {0,1}^(L-1)
[0, N - 2^(L-1)):
ex. N = 22 = 10110(2)
00****
0100**
01010*
f[k][n] := \sum[s \in {0,1}^n] [contiguous 0 in s < k]
= [x^n] (1 - x^k) / (1 - 2 x + x^(k+1))
= [x^n] (1 - x^k) \sum[d>=0] (-1)^d x^((k+1)d) / (1-2x)^(d+1)
B[d][n] := [n>=0] 2^n binom(n+d, d)
= \sum[d>=0] (-1)^d (B[d][n-(k+1)d] - B[d][n-(k+1)d-k])
= \sum[d>=0] (-1)^d (B[d][n-(k+1)d] - B[d][n+1-(k+1)(d+1)])
d = 0 && first term: 2^n
other terms:
becomes 0 for k > L
\sum[k1<=k<=L] is written by:
g0[d][n] := \sum[k>=0] B[d][n-kd] = B[d][n] + g[d][n-d]
g1[d][n] := \sum[k>=0] B[d][n-k(d+1)] = B[d][n] + g[d][n-(d+1)]
*/
int L;
char S[200'010];
Mint slow() {
vector<vector<Mint>> f(L + 1, vector<Mint>(L + 1, 0));
for (int k = 1; k <= L; ++k) {
f[k][0] = 1;
for (int n = 1; n <= k; ++n) f[k][n] = f[k][n - 1] * 2;
f[k][k] -= 1;
for (int n = k + 1; n <= L; ++n) f[k][n] = f[k][n - 1] * 2 - f[k][n - (k + 1)];
}
Mint all = 0;
for (int i = 0; i < L; ++i) (all *= 2) += (S[i] - '0');
Mint ans = (L + 1) * all;
for (int k = 1; k <= L; ++k) ans -= f[k][L - 1];
int mx = 1, now = 1;
for (int i = 1; i < L; ++i) {
++now;
if (S[i] == '0') {
chmax(mx, now);
} else {
for (int k = mx + 1; k <= L; ++k) {
// \sum[s \in 0^now {0,1}^(L-i-1)] [longest < k]
// {0,1}^now {0,1}^(L-i-1)
ans -= f[k][now + (L - i - 1)];
for (int j = 0; j < now; ++j) if (j < k) {
// exclude those starting with 0^j 1
ans += f[k][(now - j - 1) + (L - i - 1)];
}
}
now = 0;
}
}
return ans;
}
Mint fast() {
// ((k1, len), sig): ans += sig \sum[k1<=k<=L] f[k][len]
vector<pair<pair<int, int>, int>> es;
es.emplace_back(make_pair(1, L - 1), -1);
{
int mx = 1, now = 1;
for (int i = 1; i < L; ++i) {
++now;
if (S[i] == '0') {
chmax(mx, now);
} else {
// note that \sum now <= L
es.emplace_back(make_pair(mx + 1, now + (L - i - 1)), -1);
for (int j = 0; j < now; ++j) {
es.emplace_back(make_pair(max(mx, j) + 1, (now - j - 1) + (L - i - 1)), +1);
}
now = 0;
}
}
}
// cerr<<"es = "<<es<<endl;
Mint all = 0;
for (int i = 0; i < L; ++i) (all *= 2) += (S[i] - '0');
Mint ans = (L + 1) * all;
const int K = min(max((int)sqrt(1.5 * L), 0), L);
cerr<<"L = "<<L<<", K = "<<K<<endl;
cerr<<COLOR("95")<<__LINE__<<": "<<clock()<<COLOR()<<endl;
// k <= K
vector<Mint> fs(L + 1);
for (int k = 1; k <= K; ++k) {
for (int n = 0; n <= k; ++n) fs[n] = two[n];
fs[k] -= 1;
for (int n = k+1; n <= L; ++n) fs[n] = 2 * fs[n - 1] - fs[n - (k+1)];
Mint sum = 0;
for (const auto &e : es) {
const int k1 = e.first.first;
const int len = e.first.second;
if (k >= k1) sum += e.second * fs[len];
}
ans += sum;
}
cerr<<COLOR("95")<<__LINE__<<": "<<clock()<<COLOR()<<endl;
// k > K && d = 0 && first term
{
Mint sum = 0;
for (const auto &e : es) {
const int k1 = max(e.first.first, K + 1);
const int len = e.first.second;
sum += e.second * ((L - k1 + 1) * two[len]);
}
ans += sum;
}
cerr<<COLOR("95")<<__LINE__<<": "<<clock()<<COLOR()<<endl;
// k > K && other terms
vector<Mint> gs0(L + 1), gs1(L + 1);
for (int d = 0; L - (K+1) * d >= 0; ++d) {
for (int n = 0; n <= L; ++n) gs0[n] = gs1[n] = two[n] * binom(n + d, d);
for (int n = d ; n <= L; ++n) gs0[n] += gs0[n - d];
for (int n = d+1; n <= L; ++n) gs1[n] += gs1[n - (d+1)];
Mint sum = 0;
for (const auto &e : es) {
const int k1 = max(e.first.first, K + 1);
const int len = e.first.second;
const int n0 = len - (k1+1) * d;
const int n1 = len+1 - (k1+1) * (d+1);
if (d >= 1 && n0 >= 0) sum += e.second * gs0[n0];
if (n1 >= 0) sum -= e.second * gs1[n1];
}
ans += (d&1?-1:+1) * sum;
}
cerr<<COLOR("95")<<__LINE__<<": "<<clock()<<COLOR()<<endl;
return ans;
}
int main() {
prepare();
for (; ~scanf("%s", S); ) {
L = strlen(S);
const Mint ans = fast();
printf("%u\n", ans.x);
#ifdef LOCAL
if(L<=2000){
const Mint slw=slow();
if(slw!=ans){
cerr<<"S = "<<S<<endl;
cerr<<"slw = "<<slw<<endl;
cerr<<"ans = "<<ans<<endl;
assert(false);
}
}
#endif
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 6ms
memory: 10140kb
input:
110
output:
15
result:
ok 1 number(s): "15"
Test #2:
score: 10
Accepted
time: 6ms
memory: 10272kb
input:
101
output:
12
result:
ok 1 number(s): "12"
Subtask #2:
score: 10
Accepted
Dependency #1:
100%
Accepted
Test #3:
score: 10
Accepted
time: 6ms
memory: 10124kb
input:
111110
output:
198
result:
ok 1 number(s): "198"
Test #4:
score: 10
Accepted
time: 6ms
memory: 10120kb
input:
1001001
output:
253
result:
ok 1 number(s): "253"
Subtask #3:
score: 20
Accepted
Dependency #2:
100%
Accepted
Test #5:
score: 20
Accepted
time: 6ms
memory: 10212kb
input:
10100011000100111
output:
386882
result:
ok 1 number(s): "386882"
Test #6:
score: 20
Accepted
time: 6ms
memory: 10092kb
input:
111010011111010110
output:
1107742
result:
ok 1 number(s): "1107742"
Subtask #4:
score: 5
Accepted
Test #7:
score: 5
Accepted
time: 6ms
memory: 10132kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
412796008
result:
ok 1 number(s): "412796008"
Test #8:
score: 5
Accepted
time: 6ms
memory: 10084kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
818656648
result:
ok 1 number(s): "818656648"
Subtask #5:
score: 5
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Test #9:
score: 5
Accepted
time: 6ms
memory: 10204kb
input:
10000000100000010010011110111101101110000000000001100000011000111111010011010101010000101001110110010001100110000110111101000101001111101111001010001001011101011111010000100010111100110000001101111
output:
703266161
result:
ok 1 number(s): "703266161"
Test #10:
score: 5
Accepted
time: 6ms
memory: 10052kb
input:
110100000100001000101000010010101000110111101010110000101001001100100111000011100101110110010000001111010011101001111110110010001110011101001111010101100100010011101010101111111111010110001100100110
output:
330527406
result:
ok 1 number(s): "330527406"
Subtask #6:
score: 5
Accepted
Dependency #4:
100%
Accepted
Test #11:
score: 5
Accepted
time: 7ms
memory: 10264kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
340672883
result:
ok 1 number(s): "340672883"
Test #12:
score: 5
Accepted
time: 4ms
memory: 10280kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
555946758
result:
ok 1 number(s): "555946758"
Subtask #7:
score: 10
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Test #13:
score: 10
Accepted
time: 4ms
memory: 10164kb
input:
110011100110101000000110101010111111001101101011010110100100110010111110110110000111011001110000101111110111011111000110001011011011101100001100100011010010111111010110010000101001001000100001100100000001000111110100000101001011100001100011011110110101101111110011100111001010001010001111001110111100...
output:
324123594
result:
ok 1 number(s): "324123594"
Test #14:
score: 10
Accepted
time: 4ms
memory: 10276kb
input:
110100110100110110001011100000011010000010000101100100001101100100110000101000111001111100001110001001101010110010111101000100111010001011001110101010001101111010000011000010110011000011100101110100000001011100111000101111010100001101011010100101110000010001101001000100111001101101110000101101011011...
output:
209285599
result:
ok 1 number(s): "209285599"
Subtask #8:
score: 10
Accepted
Dependency #6:
100%
Accepted
Test #15:
score: 10
Accepted
time: 406ms
memory: 11136kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
468567454
result:
ok 1 number(s): "468567454"
Test #16:
score: 10
Accepted
time: 877ms
memory: 12116kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
12752860
result:
ok 1 number(s): "12752860"
Subtask #9:
score: 25
Accepted
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Dependency #7:
100%
Accepted
Dependency #8:
100%
Accepted
Test #17:
score: 25
Accepted
time: 1728ms
memory: 16728kb
input:
101100010100101011010110001111101101001010000111001111000100110110010111101100011011011111010110000000011110000010100110111110110001101001101101001110101110011000010100100101000011000010000101011001011011000000100111011110100010000100001101011110100101110000100011000101100000111111100110000111010000...
output:
711712397
result:
ok 1 number(s): "711712397"
Test #18:
score: 25
Accepted
time: 1719ms
memory: 16924kb
input:
110101110100100010101100000110000110101101111100110011100111111110000101111001101001111000110111100111110111010001000010111111110000001001011110101110001011010010010011101000110110000110110101000100111000100110101111011101111101000010000101001001000010011011000011001100111111011000111000010000100111...
output:
171668334
result:
ok 1 number(s): "171668334"
Test #19:
score: 25
Accepted
time: 1166ms
memory: 14528kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
397846555
result:
ok 1 number(s): "397846555"
Test #20:
score: 25
Accepted
time: 1257ms
memory: 17716kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
592103795
result:
ok 1 number(s): "592103795"
Extra Test:
score: 0
Extra Test Passed