QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#74396#5445. Vulpeculayuto1115TL 54ms4944kbC++1712.7kb2023-02-01 01:26:362023-02-01 01:26:39

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-02-01 01:26:39]
  • 评测
  • 测评结果:TL
  • 用时:54ms
  • 内存:4944kb
  • [2023-02-01 01:26:36]
  • 提交

answer

#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/pb_ds/tag_and_trait.hpp>
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for (ll i = ll(s); i < ll(n); ++i)
#define rep3(i, s, n, d) for(ll i = ll(s); i < ll(n); i+=d)
#define rep(...) overload4(__VA_ARGS__,rep3,rep2,rep1)(__VA_ARGS__)
#define rrep1(i, n) for (ll i = ll(n)-1; i >= 0; i--)
#define rrep2(i, n, t) for (ll i = ll(n)-1; i >= (ll)t; i--)
#define rrep3(i, n, t, d) for (ll i = ll(n)-1; i >= (ll)t; i-=d)
#define rrep(...) overload4(__VA_ARGS__,rrep3,rrep2,rrep1)(__VA_ARGS__)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) *min_element(all(a))
#define MAX(a) *max_element(all(a))
#define SORT(a) sort(all(a));
#define REV(a) reverse(all(a));
#define SZ(a) int(a.size())
#define popcount(x) __builtin_popcountll(x)
#define pf push_front
#define pb push_back
#define ef emplace_front
#define eb emplace_back
#define ppf pop_front
#define ppb pop_back
#ifdef __LOCAL
#define debug(...) { cout << #__VA_ARGS__; cout << ": "; print(__VA_ARGS__); cout << flush; }
#else
#define debug(...) void(0);
#endif
#define INT(...) int __VA_ARGS__;scan(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;scan(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;scan(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;scan(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;scan(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;scan(__VA_ARGS__)
using namespace std;
using namespace __gnu_pbds;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using LP = pair<ll, ll>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vc = vector<char>;
using vvc = vector<vc>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vlp = vector<LP>;
using vvlp = vector<vlp>;
template<class T>
using PQ = priority_queue<T>;
template<class T>
using PQrev = priority_queue<T, vector<T>, greater<T>>;

template<class S, class T>
istream &operator>>(istream &is, pair<S, T> &p) { return is >> p.first >> p.second; }

template<class S, class T>
ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << '{' << p.first << ", " << p.second << '}'; }

template<class S, class T, class U>
istream &operator>>(istream &is, tuple<S, T, U> &t) { return is >> get<0>(t) >> get<1>(t) >> get<2>(t); }

template<class S, class T, class U>
ostream &operator<<(ostream &os, const tuple<S, T, U> &t) {
    return os << '{' << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << '}';
}

template<class T>
istream &operator>>(istream &is, vector<T> &v) {
    for (T &t: v) { is >> t; }
    return is;
}

template<class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const deque<T> &v) {
    os << '[';
    rep(i, v.size()) os << v[i] << (i == int(v.size() - 1) ? "" : ", ");
    return os << ']';
}

template<class T>
ostream &operator<<(ostream &os, const set<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
ostream &operator<<(ostream &os, const multiset<T> &st) {
    os << '{';
    auto it = st.begin();
    while (it != st.end()) {
        os << (it == st.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T, class U>
ostream &operator<<(ostream &os, const map<T, U> &mp) {
    os << '{';
    auto it = mp.begin();
    while (it != mp.end()) {
        os << (it == mp.begin() ? "" : ", ") << *it;
        it++;
    }
    return os << '}';
}

template<class T>
void vecout(const vector<T> &v, char div = '\n') {
    rep(i, v.size()) cout << v[i] << (i == int(v.size() - 1) ? '\n' : div);
}

template<class T>
bool constexpr chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool constexpr chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

void scan() {}

template<class Head, class... Tail>
void scan(Head &head, Tail &... tail) {
    cin >> head;
    scan(tail...);
}

template<class T>
void print(const T &t) { cout << t << '\n'; }

template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

template<class... T>
void fin(const T &... a) {
    print(a...);
    exit(0);
}

template<class T>
vector<T> &operator+=(vector<T> &v, T x) {
    for (T &t: v) t += x;
    return v;
}

template<class T>
vector<T> &operator-=(vector<T> &v, T x) {
    for (T &t: v) t -= x;
    return v;
}

template<class T>
vector<T> &operator*=(vector<T> &v, T x) {
    for (T &t: v) t *= x;
    return v;
}

template<class T>
vector<T> &operator/=(vector<T> &v, T x) {
    for (T &t: v) t /= x;
    return v;
}

struct Init_io {
    Init_io() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        cout << boolalpha << fixed << setprecision(15);
        cerr << boolalpha << fixed << setprecision(15);
    }
} init_io;

const string yes[] = {"no", "yes"};
const string Yes[] = {"No", "Yes"};
const string YES[] = {"NO", "YES"};
const int inf = 1001001001;
const ll linf = 1001001001001001001;

void rearrange(const vi &) {}

template<class T, class... Tail>
void rearrange(const vi &ord, vector<T> &head, Tail &...tail) {
    assert(ord.size() == head.size());
    vector<T> ori = head;
    rep(i, ord.size()) head[i] = ori[ord[i]];
    rearrange(ord, tail...);
}

template<class T, class... Tail>
void sort_by(vector<T> &head, Tail &... tail) {
    vi ord(head.size());
    iota(all(ord), 0);
    sort(all(ord), [&](int i, int j) { return head[i] < head[j]; });
    rearrange(ord, head, tail...);
}

bool in_rect(int i, int j, int h, int w) {
    return 0 <= i and i < h and 0 <= j and j < w;
}

template<class T, class S>
vector<T> cumsum(const vector<S> &v, bool shift_one = true) {
    int n = v.size();
    vector<T> res;
    if (shift_one) {
        res.resize(n + 1);
        rep(i, n) res[i + 1] = res[i] + v[i];
    } else {
        res.resize(n);
        if (n) {
            res[0] = v[0];
            rep(i, 1, n) res[i] = res[i - 1] + v[i];
        }
    }
    return res;
}

vvi graph(int n, int m, bool directed = false, int origin = 1) {
    vvi G(n);
    rep(_, m) {
        INT(u, v);
        u -= origin, v -= origin;
        G[u].pb(v);
        if (!directed) G[v].pb(u);
    }
    return G;
}

template<class T>
vector<vector<pair<int, T>>> weighted_graph(int n, int m, bool directed = false, int origin = 1) {
    vector<vector<pair<int, T>>> G(n);
    rep(_, m) {
        int u, v;
        T w;
        scan(u, v, w);
        u -= origin, v -= origin;
        G[u].eb(v, w);
        if (!directed) G[v].eb(u, w);
    }
    return G;
}

using ull = unsigned long long;

// F_2 上での直交補空間の基底を求める
// m : ベクトルの次元 (bit 数)
// time complexity : O(m^2)
// 逆行列を使う方法もある (https://twitter.com/maspy_stars/status/1620100688746520576?s=20&t=ZZ5GB-lGGnp0tmpK1CO6Vg)
// tips : (V⊥ + W⊥)⊥ = V ∩ W
template<class T>
vector<T> orthogonal_complement(int m, vector<T> es) {
    int n = SZ(es);
    vi p(n, m - 1);
    vb used(m);
    rrep(i, n) {
        assert(es[i]);
        while (~es[i] >> p[i] & 1) --p[i];
        used[p[i]] = true;
        rep(j, i) chmin(es[j], es[j] ^ es[i]);
    }
    vector<T> res;
    rep(i, m) {
        if (used[i]) continue;
        T now = T(1) << i;
        rep(j, n) {
            if (popcount(now & es[j]) & 1) now |= T(1) << p[j];
        }
        res.pb(now);
    }
    return res;
}

template<class D>
class rerooting {
    using T = typename D::T;
    
    int n;
    vvi tree;
    vector<vector<T>> dp;
    vector<T> ans;
    
    T dfs(int u = 0, int p = -1) {
        T sum = D::id;
        dp[u].resize(tree[u].size());
        rep(i, tree[u].size()) {
            int v = tree[u][i];
            if (v == p) continue;
            dp[u][i] = dfs(v, u);
            sum = D::merge(sum, D::add_root(dp[u][i], u, v));
        }
        return sum;
    }
    
    void dfs2(T dpP, int u = 0, int p = -1) {
        int sz = tree[u].size();
        rep(i, sz) if (tree[u][i] == p) dp[u][i] = dpP;
        vector<T> sumL(sz + 1, D::id), sumR(sz + 1, D::id);
        rep(i, sz) sumL[i + 1] = D::merge(sumL[i], D::add_root(dp[u][i], u, tree[u][i]));
        rrep(i, sz) sumR[i] = D::merge(sumR[i + 1], D::add_root(dp[u][i], u, tree[u][i]));
        ans[u] = sumL[sz];
        rep(i, sz) {
            int v = tree[u][i];
            if (v == p) continue;
            T t = D::merge(sumL[i], sumR[i + 1]);
            dfs2(t, v, u);
        }
    }

public:
    explicit rerooting(const vvi &tree) : n(tree.size()), tree(tree), dp(n), ans(n) {
        dfs();
        dfs2(D::id);
    };
    
    T get_ans(int i) {
        return D::add_root(ans[i], -1, i);
    }
};

vector<vector<ull>> es;

class D {
public:
    using T = vector<pair<int, ull>>;
    
    static T id;
    
    static T merge(const T &l, const T &r) {
        int li = 0, ri = 0;
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        while (li < SZ(l) or ri < SZ(r)) {
            if (li < SZ(l) and ri < SZ(r)) {
                if (l[li].first <= r[ri].first) add(l[li++]);
                else add(r[ri++]);
            } else if (li < SZ(l)) {
                add(l[li++]);
            } else {
                add(r[ri++]);
            }
        }
        return res;
    }
    
    static T add_root(const T &x, int u, int v) {
        T res;
        auto add = [&](const pair<int, ull> &p) {
            auto [d, t] = p;
            for (auto [_, e]: res) chmin(t, t ^ e);
            if (t) res.eb(d, t);
        };
        for (ull e: es[v]) res.eb(0, e);
        for (auto [d, t]: x) add({d + 1, t});
        return res;
    }
};

D::T D::id = {};

int main() {
    INT(n);
    vvi G(n);
    rep(i, 1, n) {
        INT(p);
        --p;
        G[p].pb(i);
        G[i].pb(p);
    }
    es.resize(n);
    rep(i, n) {
        INT(m);
        vector<ull> x(m);
        scan(x);
        vector<ull> x2;
        rep(j, SZ(x)) {
            rep(k, j) chmin(x[j], x[j] ^ x[k]);
            if (x[j]) x2.pb(x[j]);
        }
        x = orthogonal_complement(64, x2);
        rep(j, SZ(x)) {
            rep(k, j) chmin(x[j], x[j] ^ x[k]);
            assert(x[j]);
        }
        es[i] = x;
    }
    rerooting<D> rt(G);
    rep(i, n) {
        auto v = rt.get_ans(i);
        vector<bitset<128>> a;
        vector<ull> tmp;
        for (auto [_, t]: v) {
            a.pb(t);
            tmp.pb(t);
        }
        tmp = orthogonal_complement(64, tmp);
        for (auto t: tmp) {
            a.pb(t);
        }
        // 逆行列の計算
        rep(j, 64) a[j][64 + j] = 1;
//        debug(v);
//        rep(j, 64) debug(a[j].to_string());
//        debug('#');
        rep(j, 64) {
            rep(k, j, 64) if (a[k][j]) swap(a[k], a[j]);
            assert(a[j][j]);
            rep(k, 64) {
                if (k == j) continue;
                if (a[k][j]) a[k] ^= a[j];
            }
        }
//        rep(j, 64) debug(a[j].to_string());
        vector<ull> b(64);
        rep(j, 64) rep(k, 64) {
                if (a[j][64 + k]) {
                    b[63 - k] |= 1ull << j;
                }
            }
        rep(j, 64) {
            rep(k, j) chmin(b[j], b[j] ^ b[k]);
            assert(b[j]);
        }
        ull mx = 0;
        rep(j, 64 - SZ(v)) chmax(mx, mx ^ b[j]);
        ull ans = 0;
        int r = n;
        rrep(j, SZ(v)) {
            auto [d, _] = v[j];
            if (d < r) ans += mx * (r - d);
            r = d;
            chmax(mx, mx ^ b[63 - j]);
//            debug(j, d, _, mx);
        }
        if (r) ans += mx * r;
        print(ans);
    }
}

详细

Test #1:

score: 100
Accepted
time: 2ms
memory: 3396kb

input:

2
1
2 2 3
2 1 1

output:

4
2

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 1ms
memory: 3416kb

input:

5
1 2 2 3
3 83 75 58
4 125 124 58 16
4 39 125 71 112
3 69 66 5
4 48 73 69 6

output:

171
125
183
142
243

result:

ok 5 lines

Test #3:

score: 0
Accepted
time: 1ms
memory: 3396kb

input:

2
1
0
0

output:

0
0

result:

ok 2 lines

Test #4:

score: 0
Accepted
time: 54ms
memory: 4944kb

input:

500
1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...

output:

18434153946472599289
17931933346714042066
17916198204903720383
17916198204176061148
17931933346710961779
18445169471807930489
17931926407666058065
18445169471807930348
17931933346714042064
17916198204176061019
18445169471807930488
18446738828973977865
17916198204176061018
17931926407666058064
184467...

result:

ok 500 lines

Test #5:

score: -100
Time Limit Exceeded

input:

49999
1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...

output:

18446744063446965319
18316893942693974299
18446744073709548919
18355577725686532847
18446744073709551614
18446744073709551615
18446744073709551614
18446744073709551615
18446736549671322125
12348860911474380074
18446744072601433415
18446744073709551615
17335313836902106838
18446744073709551576
184467...

result: