QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#74167#5445. Vulpeculajapan022022AC ✓3289ms241052kbC++2028.8kb2023-01-30 22:42:562023-01-30 22:42:59

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-01-30 22:42:59]
  • 评测
  • 测评结果:AC
  • 用时:3289ms
  • 内存:241052kb
  • [2023-01-30 22:42:56]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
// #include "alg/monoid/xor_basis.hpp"
#line 1 "library/graph/rerooting_dp.hpp"

#line 2 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void resize(int n) { N = n; }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void read_parent(int off = 1) {
    for (int v = 1; v < N; ++v) {
      INT(p);
      p -= off;
      add(p, v);
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 3 "library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
// 木以外、非連結でも dfs 順序や親がとれる。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  bool hld;
  vector<int> LID, RID, head, V, parent;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = -1, bool hld = 1)
      : G(G),
        N(G.N),
        hld(hld),
        LID(G.N),
        RID(G.N),
        head(G.N, r),
        V(G.N),
        parent(G.N, -1),
        depth(G.N, -1),
        depth_weighted(G.N, 0) {
    assert(G.is_prepared());
    int t1 = 0;
    if (r != -1) {
      dfs_sz(r, -1);
      dfs_hld(r, t1);
    } else {
      for (int r = 0; r < N; ++r) {
        if (parent[r] == -1) {
          head[r] = r;
          dfs_sz(r, -1);
          dfs_hld(r, t1);
        }
      }
    }
  }

  void dfs_sz(int v, int p) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      dfs_sz(e.to, v);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int lca(int u, int v) { return LCA(u, v); }
  int la(int u, int v) { return LA(u, v); }

  int subtree_size(int v) { return RID[v] - LID[v]; }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist(int a, int b, bool weighted) {
    assert(weighted);
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};
#line 4 "library/graph/rerooting_dp.hpp"

template <typename TREE, typename Data>
struct Rerooting_dp {
  TREE& tree;
  vc<Data> dp_1; // 辺 pv に対して、部分木 v
  vc<Data> dp_2; // 辺 pv に対して、部分木 p
  vc<Data> dp;   // すべての v に対して、v を根とする部分木

  template <typename F1, typename F2, typename F3>
  Rerooting_dp(TREE& tree, F1 f_ee, F2 f_ev, F3 f_ve, const Data unit)
      : tree(tree) {
    assert(!tree.G.is_directed());
    build(f_ee, f_ev, f_ve, unit);
  }

  // v を根としたときの full tree
  Data operator[](int v) { return dp[v]; }

  // root を根としたときの部分木 v
  Data get(int root, int v) {
    if (root == v) return dp[v];
    if (!tree.in_subtree(root, v)) { return dp_1[v]; }
    int w = tree.jump(v, root, 1);
    return dp_2[w];
  }

  template <typename F1, typename F2, typename F3>
  void build(F1 f_ee, F2 f_ev, F3 f_ve, const Data unit) {
    int N = tree.G.N;
    dp_1.assign(N, unit);
    dp_2.assign(N, unit);
    dp.assign(N, unit);
    auto& V = tree.V;
    auto& par = tree.parent;

    FOR_R(i, N) {
      int v = V[i];
      auto ch = tree.collect_child(v);
      int n = len(ch);
      vc<Data> Xl(n + 1, unit), Xr(n + 1, unit);
      FOR(i, n) Xl[i + 1] = f_ee(Xl[i], dp_2[ch[i]]);
      FOR_R(i, n) Xr[i] = f_ee(dp_2[ch[i]], Xr[i + 1]);
      FOR(i, n) dp_2[ch[i]] = f_ee(Xl[i], Xr[i + 1]);
      dp[v] = Xr[0];
      dp_1[v] = f_ev(dp[v], v);
      for (auto&& e: tree.G[v]) {
        if (e.to == par[v]) { dp_2[v] = f_ve(dp_1[v], e); }
      }
    }
    {
      int v = V[0];
      dp[v] = f_ev(dp[v], v);
      for (auto&& e: tree.G[v]) dp_2[e.to] = f_ev(dp_2[e.to], v);
    }
    FOR(i, N) {
      int v = V[i];
      for (auto&& e: tree.G[v]) {
        if (e.to == par[v]) continue;
        Data x = f_ve(dp_2[e.to], e);
        for (auto&& f: tree.G[e.to]) {
          if (f.to == par[e.to]) continue;
          dp_2[f.to] = f_ee(dp_2[f.to], x);
          dp_2[f.to] = f_ev(dp_2[f.to], e.to);
        }
        x = f_ee(dp[e.to], x);
        dp[e.to] = f_ev(x, e.to);
      }
    }
  }
};
#line 5 "main.cpp"

const int LOG = 64;
using ARR = array<u64, 64>;

struct Monoid_XorBasis {
  using value_type = ARR;
  using VECT_SP = value_type;
  // 破壊的に変更する
  static u64 add_element(VECT_SP& x, u64 v) {
    for (auto&& e: x) {
      if (v == 0) break;
      if (e == 0) {
        e = v;
        return v;
      }
      chmin(v, v ^ e);
    }
    return 0;
  }

  static u64 get_max(const VECT_SP& V) {
    u64 res = 0;
    for (auto&& x: V) chmax(res, res ^ x);
    return res;
  }
  static constexpr VECT_SP unit() { return VECT_SP(); };
  static constexpr bool commute = true;
};

// 行ベクトル
ARR solve_linear_F2(ARR& mat) {
  int n = 0, m = 64;
  for (auto&& x: mat)
    if (x) ++n;
  int rk = 0;
  FOR(j, m) {
    if (rk == n) break;
    if (!(mat[rk] >> j & 1)) {
      FOR(i, rk + 1, n) if (mat[i] >> j & 1) {
        swap(mat[rk], mat[i]);
        break;
      }
    }
    if (!(mat[rk] >> j & 1)) continue;
    FOR(i, n) if (i != rk) {
      if (mat[i] >> j & 1) { mat[i] ^= mat[rk]; }
    }
    ++rk;
  }
  ARR res{};
  vc<int> pivot(m, -1);
  int p = 0;
  FOR(i, rk) {
    while (!(mat[i] >> p & 1)) ++p;
    pivot[p] = i;
  }
  int nxt = 0;
  FOR(j, m) if (pivot[j] == -1) {
    u64 x = 0;
    x |= u64(1) << j;
    FOR(k, j) if (pivot[k] != -1 && (mat[pivot[k]] >> j & 1)) {
      x |= u64(1) << k;
    }
    res[nxt++] = x;
  }
  return res;
}

/*
template <int MAX_N, typename T = bool>
vvc<T> mat_inv_F2(vvc<T> a) {
  const int N = len(a);
  using BS = bitset<MAX_N>;
  vc<BS> A(N), B(N);
  FOR(i, N) FOR(j, N) if (a[i][j]) A[i][j] = 1;
  FOR(n, N) B[n][n] = 1;
  FOR(i, N) {
    FOR(k, i, N) if (A[k][i]) {
      if (k != i) { swap(A[i], A[k]), swap(B[i], B[k]); }
      break;
    }
    if (!A[i][i]) return {};
    FOR(k, N) if (i != k) {
      if (!A[k][i]) continue;
      A[k] ^= A[i];
      B[k] ^= B[i];
    }
  }
  vv(T, b, N, N);
  FOR(i, N) FOR(j, N) if (B[i][j]) b[i][j] = 1;
  return b;
}
*/

ARR mat_inv_F2(ARR& A) {
  const int N = len(A);
  ARR B;
  FOR(i, N) B[i] = u64(1) << i;
  FOR(i, N) {
    FOR(k, i, N) if (A[k] >> i & 1) {
      if (k != i) { swap(A[i], A[k]), swap(B[i], B[k]); }
      break;
    }
    if (!(A[i] >> i & 1)) return {};
    FOR(k, N) if (i != k) {
      if (!(A[k] >> i & 1)) continue;
      A[k] ^= A[i];
      B[k] ^= B[i];
    }
  }
  return B;
}

void solve() {
  using Mono = Monoid_XorBasis;
  using SP = Mono::value_type;
  LL(N);
  Graph<bool, 0> G(N);
  FOR(v, 1, N) {
    INT(p);
    G.add(--p, v);
  }
  G.build();
  Tree<decltype(G)> tree(G);

  vc<SP> dual(N);
  FOR(v, N) {
    INT(n);
    SP X = Mono::unit();
    FOR(n) {
      u64 e;
      read(e);
      Mono::add_element(X, e);
    }
    dual[v] = solve_linear_F2(X);
    // print(v, ",", dual[v]);
  }
  // ここまで 0.9 sec

  /*
  木 dp の状態
  ・深さ d のときに dual space に a が追加される (d,a) というイベントの列
  ・高々 64
  */
  using P = pair<int, u64>;
  using Data = vc<P>;
  Data unit = {};
  /*
  auto shrink = [&](Data& x) -> Data {
    // sort(all(x));
    Data res;
    SP V = Mono::unit();
    for (auto&& [d, a]: x) {
      if (len(V) == LOG) break;
      if (Mono::add_element(V, a)) res.eb(d, V.back());
    }
    return res;
  };
  */

  auto fee = [&](Data& x, Data& y) -> Data {
    // merge sort
    Data z;
    auto V = Mono::unit();
    auto add = [&](P& dat) -> void {
      if (V.back()) return;
      u64 e = Mono::add_element(V, dat.se);
      if (e) z.eb(dat.fi, e);
    };

    int p = 0, q = 0;
    while (p < len(x) || q < len(y)) {
      if (V.back()) break;
      if (p == len(x)) { add(y[q++]); }
      elif (q == len(y)) { add(x[p++]); }
      else {
        if (x[p].fi < y[q].fi) {
          add(x[p++]);
        } else {
          add(y[q++]);
        }
      }
    }
    return z;
  };
  auto fev = [&](Data& x, int v) -> Data {
    Data y;
    for (auto&& a: dual[v])
      if (a) y.eb(0, a);
    auto V = dual[v];
    for (auto&& [d, a]: x) {
      if (V.back()) break;
      auto e = Mono::add_element(V, a);
      if (e) y.eb(d, e);
    }
    return y;
  };
  // e は v から出る有向辺
  auto fve = [&](Data x, auto& e) -> Data {
    for (auto&& [d, a]: x) ++d;
    return x;
  };
  Rerooting_dp<decltype(tree), Data> dp(tree, fee, fev, fve, unit);
  // ここまで 2.5 sec

  FOR(v, N) {
    auto event = dp[v];
    // full space にしておく
    vc<int> done(LOG);
    for (auto&& [d, a]: event)
      if (a) done[topbit(a)] = 1;
    FOR(i, LOG) if (!done[i]) event.eb(N, u64(1) << i);
    // for (auto&& [a, b]: event) FOR(i, LOG) event.eb(N, u64(1) << i);
    // event = shrink(event);
    assert(len(event) == LOG);
    ARR mat;
    FOR(i, LOG) mat[i] = event[i].se;
    mat = mat_inv_F2(mat);
    FOR(j, LOG) {
      u64 x = 0;
      FOR(i, LOG) if (mat[i] >> j & 1) x |= u64(1) << i;
      event[j].se = x;
    }
    event.insert(event.begin(), {0, u64(0)});

    u64 ANS = 0;
    SP X = Mono::unit();
    FOR_R(i, 1, 1 + LOG) {
      u64 x = event[i].se;
      Mono::add_element(X, x);
      int t1 = event[i - 1].fi, t2 = event[i].fi;
      if (t1 < t2) {
        u64 ans = Mono::get_max(X);
        // print(v, t1, t2, ans);
        ANS += ans * u64(t2 - t1);
      }
    }
    print(ANS);
  }
  // ここまで 3.8 sec
  return;
}

signed main() {
  solve();
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 2ms
memory: 3592kb

input:

2
1
2 2 3
2 1 1

output:

4
2

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 2ms
memory: 3540kb

input:

5
1 2 2 3
3 83 75 58
4 125 124 58 16
4 39 125 71 112
3 69 66 5
4 48 73 69 6

output:

171
125
183
142
243

result:

ok 5 lines

Test #3:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

2
1
0
0

output:

0
0

result:

ok 2 lines

Test #4:

score: 0
Accepted
time: 38ms
memory: 4868kb

input:

500
1 2 3 2 1 2 6 2 4 6 6 10 7 12 7 9 8 10 12 20 12 19 15 24 25 23 25 22 29 29 28 26 31 25 34 31 35 33 39 37 36 42 37 37 41 43 42 46 45 45 49 52 53 50 46 50 49 52 58 57 57 61 57 59 56 65 63 59 66 65 63 70 70 68 72 71 73 72 72 76 72 75 80 76 76 82 83 80 89 89 91 85 85 90 89 89 89 92 93 91 92 93 98 96...

output:

18434153946472599289
17931933346714042066
17916198204903720383
17916198204176061148
17931933346710961779
18445169471807930489
17931926407666058065
18445169471807930348
17931933346714042064
17916198204176061019
18445169471807930488
18446738828973977865
17916198204176061018
17931926407666058064
184467...

result:

ok 500 lines

Test #5:

score: 0
Accepted
time: 2879ms
memory: 187756kb

input:

49999
1 1 3 1 1 5 2 4 1 8 7 6 3 13 4 12 12 1 19 8 2 16 23 6 21 3 11 1 21 7 14 6 3 28 31 24 6 22 27 11 17 25 41 5 17 13 1 48 17 14 31 18 43 30 53 27 7 39 4 2 11 55 48 17 32 15 24 44 53 63 70 31 21 17 74 37 34 48 15 33 14 53 8 9 72 10 65 77 69 36 32 61 51 63 77 25 71 47 59 94 39 41 77 24 5 33 43 18 72...

output:

18446744063446965319
18316893942693974299
18446744073709548919
18355577725686532847
18446744073709551614
18446744073709551615
18446744073709551614
18446744073709551615
18446736549671322125
12348860911474380074
18446744072601433415
18446744073709551615
17335313836902106838
18446744073709551576
184467...

result:

ok 49999 lines

Test #6:

score: 0
Accepted
time: 2971ms
memory: 186828kb

input:

50000
1 1 1 2 2 2 3 4 4 5 5 5 6 6 8 8 8 8 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14 14 15 15 15 16 18 18 19 19 20 20 20 20 21 23 24 24 24 24 26 26 27 27 28 29 29 29 30 30 30 31 31 32 32 32 32 33 33 33 34 34 35 35 36 36 36 36 37 38 38 38 38 39 39 39 40 41 42 43 44 44 45 45 45 46 46 47 47 47 47 47 48 4...

output:

17388026687988753207
18446123107769912009
18433598785516292263
18446483694069646475
18446744073700722557
18446743950305151556
18446123107769912008
18446170606667738311
18446744071353497819
18446744065870877991
18446744073709531050
18446744073709231216
18446546425974411728
18446744073709533965
184467...

result:

ok 50000 lines

Test #7:

score: 0
Accepted
time: 1946ms
memory: 186672kb

input:

50000
1 1 3 4 5 6 5 7 3 10 6 12 12 12 5 8 17 4 19 20 17 22 22 22 25 25 27 27 28 22 31 31 31 34 34 35 37 38 38 40 41 42 43 42 44 46 40 42 47 50 50 40 53 41 42 56 57 58 59 59 61 62 59 64 65 65 59 61 69 62 71 72 73 72 72 74 58 62 79 80 79 82 74 84 84 84 46 72 89 90 90 34 93 94 94 96 94 95 95 100 101 10...

output:

68374895075
72669862370
64079927780
59784960485
55489993190
59784959085
64079926378
51195028691
68374893673
68374895075
72669862370
64079926376
68374893671
68374893671
68374893671
59784960485
46900064818
51195032113
64079927780
68374895075
72669862370
42605100943
46900068238
46900068216
46900068238
...

result:

ok 50000 lines

Test #8:

score: 0
Accepted
time: 1135ms
memory: 71320kb

input:

25000
1 2 3 4 3 3 1 7 4 5 8 8 6 5 6 12 10 5 13 16 1 11 9 22 2 26 7 15 10 9 18 11 14 27 35 30 6 38 20 37 14 28 9 12 29 19 16 17 17 25 51 52 23 24 45 56 17 33 31 32 13 62 21 33 18 5 67 20 41 58 61 34 31 19 25 28 75 76 24 23 27 36 19 6 85 15 14 50 49 54 29 81 23 79 32 82 97 53 40 42 66 46 30 78 40 43 8...

output:

18446744070444123456
18446744051208917090
18446744073687263354
18446744073709551561
18446742841285205723
18446175471565024345
18446744041357423475
18371821048696416150
18446743733103011459
18446744058754418143
18446744073615083416
18438543872624704476
18428215314831608530
18146245131772760630
184467...

result:

ok 25000 lines

Test #9:

score: 0
Accepted
time: 1173ms
memory: 241052kb

input:

50000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 50000 lines

Test #10:

score: 0
Accepted
time: 1900ms
memory: 197560kb

input:

50000
1 2 2 4 5 6 7 8 8 10 10 11 9 14 15 15 16 18 19 13 20 22 22 21 25 26 27 28 28 4 31 32 32 34 35 36 37 38 39 40 37 42 43 44 45 45 40 48 49 50 49 52 52 41 55 55 57 56 38 60 61 62 63 64 63 50 48 68 69 69 62 72 73 72 75 68 77 56 19 44 81 82 83 82 83 61 87 87 89 90 89 92 18 94 95 96 94 98 99 96 95 10...

output:

18446744073709551601
18446744073709551602
18446744073709551603
18446744073709551603
18446744073709551604
18446744073709551605
18446744073709551606
18446744073709551607
18446744073709551608
18446744073709551608
18446744073709551609
18446744073709551607
18446744073709551610
18446744073709551609
184467...

result:

ok 50000 lines

Test #11:

score: 0
Accepted
time: 2087ms
memory: 222216kb

input:

50000
1 1 3 4 5 2 7 8 6 9 11 12 10 14 13 15 16 17 18 19 21 20 22 24 23 25 27 26 28 30 31 32 33 34 29 35 37 36 38 40 41 39 42 44 43 45 46 48 47 50 49 52 53 51 55 56 54 57 58 59 60 62 61 64 65 66 67 68 69 70 63 71 72 74 73 76 75 78 77 79 80 81 82 83 84 85 86 87 88 89 90 92 91 93 94 96 97 98 95 99 101 ...

output:

18367844186012628696
18367842430297867877
18367845941602017631
18367847696870482250
18367849452065176591
18367851207243104606
18367840674674503782
18367838919205517572
18367837164020295681
18367852674316374835
18367835408823989376
18367833653098428815
18367831897383952668
18367854141296903375
183678...

result:

ok 50000 lines

Test #12:

score: 0
Accepted
time: 3289ms
memory: 240136kb

input:

50000
1 2 1 4 5 6 7 8 9 10 3 12 13 14 15 16 17 18 19 20 21 11 23 24 22 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 25 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...

output:

11830693669206161426
15555323927066560228
835488532647364820
7363753604854029059
2894535118950984022
16874499773021899126
12292344295621663824
2102496437386641629
10354835809796005713
162709530062143497
8417327324005152592
4562471278575433430
8264626372817797937
11957077303114769622
1557751198611634...

result:

ok 50000 lines

Test #13:

score: 0
Accepted
time: 2977ms
memory: 239440kb

input:

50000
1 2 1 3 5 6 4 8 9 7 11 10 13 14 12 15 16 18 17 20 21 19 22 23 24 26 27 25 28 30 29 31 32 33 35 36 34 38 37 40 39 41 43 42 45 46 47 48 49 50 51 52 44 53 55 56 57 58 59 54 61 62 63 60 65 66 67 64 68 70 71 72 73 69 74 75 76 78 77 80 81 82 83 84 79 86 85 87 89 88 90 91 93 94 92 95 96 98 99 100 101...

output:

16810415591965710206
5275813827366931639
12187956060199693517
9898273769935206067
653336450317114274
7565460974601185858
14477586125848329007
2986131906626164386
14520727293949990938
7608579144925250248
2942966458731584974
9855075192825865421
696430430531850340
12231025207124581077
53188757511752785...

result:

ok 50000 lines

Test #14:

score: 0
Accepted
time: 1676ms
memory: 153360kb

input:

31313
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

1518477777710383951
3446880237630672556
5375282697550961161
7303685157471249766
9232087617391538371
11160490077311826976
13088892537232115581
15017294997152404186
17030136166604856930
601970532795349017
2691592330956422031
4794695333535720614
6898050158530892320
9002503327771076773
11106956497011261...

result:

ok 31313 lines

Test #15:

score: 0
Accepted
time: 1172ms
memory: 153396kb

input:

31313
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
18446744073709520303
184467...

result:

ok 31313 lines

Test #16:

score: 0
Accepted
time: 1710ms
memory: 155704kb

input:

31808
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
18446744073709519808
184467...

result:

ok 31808 lines

Test #17:

score: 0
Accepted
time: 2730ms
memory: 193176kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

15658173558095990214
15658173558095998555
15658173558123845005
15658173613076015572
15658365411239272757
2992667818252910683
10515380727096854521
3329056206310134596
14672528822163917116
9835783189211567135
5009729745968077358
256541647148705941
13954274486084260192
9213163634610566161
4448012011035...

result:

ok 50000 lines

Test #18:

score: 0
Accepted
time: 2503ms
memory: 193092kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

3246770574180091123
3246770574180091711
3246770574180125502
3246770574453894763
3246770575019028530
3246770714638951845
3247334863522250449
3411114883517164810
4193641964412498082
7329436606616368233
10534871863271214916
13810895930625513148
17721984031988561169
2040728658901769657
53817324955790019...

result:

ok 50000 lines

Test #19:

score: 0
Accepted
time: 2612ms
memory: 193028kb

input:

49997
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

13879803950673289380
13879803950673289550
13879803950673290782
13879803950673337110
13879803950674407795
13879803950684809701
13879805197930577641
13879826482644923358
13880629738256442364
14134093906395557353
18271507277841796526
13123553568911009498
11270183798612905609
8551213401850783051
6812615...

result:

ok 49997 lines

Test #20:

score: 0
Accepted
time: 2355ms
memory: 193012kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

10009788994307399163
10009788994307399196
10009788994307415900
10009788994307449079
10009788994307488500
10009788994307894593
10009788994342827120
10009788994409580461
10009789000039109023
10009789005302384418
10009790334413012985
10010155466478437881
10019568939069498282
10040873119747734210
118085...

result:

ok 50000 lines

Test #21:

score: 0
Accepted
time: 2627ms
memory: 193184kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

8197127906950493607
8197127906950493704
8197127906950493809
8197127906950494665
8197127906950503630
8197127906950513290
8197127906950519905
8197127906950710769
8197127906950751282
8197127906962741333
8197127906986143082
8197127907194345995
8197127918832372618
8197128059899073438
8197147004157338209
...

result:

ok 50000 lines

Test #22:

score: 0
Accepted
time: 2351ms
memory: 193028kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

16883289287632485302
16883289287632485327
16883289287632486340
16883289287632486927
16883289287632487548
16883289287632488988
16883289287632491299
16883289287632569146
16883289287633014313
16883289287634010799
16883289287634081426
16883289289172254193
16883289361917645643
16883289435296772772
168832...

result:

ok 50000 lines

Test #23:

score: 0
Accepted
time: 1903ms
memory: 214676kb

input:

50000
1 2 3 4 5 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 6 34 35 36 37 38 39 40 33 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101...

output:

8906255203496761589
7263517325311258982
5620779447125756375
3978041568940253768
2335303690754751161
692565812569248554
10548993081682264196
12191730959867766803
13834468838053269410
15477206716238772017
17119944594424274624
315938398900225615
1958676277085728222
3601414155271230829
52441520334567334...

result:

ok 50000 lines

Test #24:

score: 0
Accepted
time: 2559ms
memory: 172632kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

10505887253194632628
10505887253199649163
10505887253204665698
10505887253209682233
10505887253214698768
10505887253219715303
10505887253224731838
10505887253229748373
10505887253234764908
10505887253239781443
10505887253244797978
10505887253249814513
10505887253254831048
10505887253259847583
105058...

result:

ok 50000 lines

Test #25:

score: 0
Accepted
time: 1916ms
memory: 175776kb

input:

50000
1 1 1 1 2 2 2 3 3 4 4 4 4 4 4 4 7 8 8 10 10 11 13 13 13 15 15 15 16 16 17 18 18 19 19 21 21 22 24 24 25 26 26 27 29 29 29 31 32 33 33 34 34 36 39 39 39 40 41 41 42 43 43 44 45 45 49 52 55 56 58 58 60 60 60 60 62 62 63 64 64 66 68 70 72 76 77 78 78 80 80 81 82 82 83 84 85 85 86 88 88 90 92 93 9...

output:

4737593169765558208
15134494603825587080
12787435809415080952
15134494603825587080
15134494603825587080
7084651964176064336
7084651964176064336
7084651964176064336
4737593169765558208
2390534375355052080
7084651964176064336
7084651964176064336
7084651964176064336
7084651964176064336
7084651964176064...

result:

ok 50000 lines

Test #26:

score: 0
Accepted
time: 1930ms
memory: 172692kb

input:

50000
1 1 3 4 5 6 7 7 9 10 4 12 11 14 15 16 15 18 19 18 21 21 23 23 22 9 13 28 29 30 31 11 27 34 35 36 37 37 35 40 40 39 43 42 45 46 46 41 49 43 39 38 53 17 50 2 57 57 59 60 61 61 63 59 65 66 67 68 69 70 71 72 73 72 75 76 74 78 77 68 81 82 82 84 85 86 86 87 89 83 91 92 93 94 85 81 97 98 99 100 100 1...

output:

18446156882414553476
18446744071320896184
18444947032707026718
18444946976966471873
18444946976363343971
18444946975822193856
18444946975794333871
18444946975766473886
18444946975778144560
18444946975761955249
18444946975745765938
18444946970557712772
18444946969840748104
18444946975729576627
184449...

result:

ok 50000 lines

Test #27:

score: 0
Accepted
time: 1880ms
memory: 189340kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

15357665124154983412
15357665124163302249
15357665124171621086
15357665124179939923
15357665124188258760
15357665124196577597
15357665124204896434
15357665124213215271
15357665124221534108
15357665124229852945
15357665124238171782
15357665124246490619
15357665124254809456
15357665124263128293
153576...

result:

ok 50000 lines

Test #28:

score: 0
Accepted
time: 1849ms
memory: 180292kb

input:

50000
1 2 3 4 5 6 7 8 9 10 10 10 13 12 10 10 17 10 10 20 21 15 19 11 25 23 24 28 29 30 31 16 33 34 35 36 37 38 39 40 41 41 41 43 41 46 41 41 49 50 51 52 53 54 55 48 26 58 59 60 41 45 63 64 65 66 67 10 69 47 71 72 27 74 42 76 77 78 14 80 81 82 83 62 85 70 87 88 89 90 44 92 93 94 95 96 97 98 99 100 10...

output:

16978346014626379089
16978346014627893800
16978346014629408511
16978346014630923222
16978346014632437933
16978346014633952644
16978346014635467355
16978346014636982066
16978346014638496777
16978346014640011488
13800810765581693289
16978344220397954045
17047785907924009580
16341238903432751054
169783...

result:

ok 50000 lines

Test #29:

score: 0
Accepted
time: 2196ms
memory: 183784kb

input:

50000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...

output:

11115302636941690500
11115302636947119498
11115302636952548496
11115302636957977494
11115302636963406492
11115302636968835490
11115302636974264488
11115302636979693486
11115302636985122484
11115302636990551482
11115302636995980480
11115302637001409478
11115302637006838476
11115302637012267474
111153...

result:

ok 50000 lines

Test #30:

score: 0
Accepted
time: 1548ms
memory: 129488kb

input:

40000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26 27 28 29 10 31 32 33 34 35 36 37 38 39 10 41 42 43 44 45 46 47 48 49 10 51 52 53 54 55 56 57 58 59 10 61 62 63 64 65 66 67 68 69 10 71 72 73 74 75 76 77 78 79 10 81 82 83 84 85 86 87 88 89 10 91 92 93 94 95 96 97 98 99 10 101...

output:

14657845295672959170
14657845295672959274
14657845295672959378
14657845295672959482
14657845295672959586
14657845295672959690
14657845295672959794
14657845295672959898
14657845295672960002
14657845295672960106
18146929762413675894
13517288070671864653
10593708414547966432
8816878404747688229
1075607...

result:

ok 40000 lines