QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#740754#9631. Median ReplacementwsyearWA 1ms3636kbC++204.5kb2024-11-13 11:21:212024-11-13 11:21:21

Judging History

你现在查看的是最新测评结果

  • [2024-11-13 11:21:21]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:3636kb
  • [2024-11-13 11:21:21]
  • 提交

answer

// Author: Klay Thompson
// Problem: M. Median Replacement
// Memory Limit: 1024 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>

#define rep(i, j, k) for (int i = (j); i <= (k); ++i)
#define per(i, j, k) for (int i = (j); i >= (k); --i)
#define SZ(v) int((v).size())
#define ALL(v) (v).begin(),(v).end()
#define fi first
#define se second
using ll = long long;
using pii = std::pair<int, int>;
using pll = std::pair<ll, ll>;

template<class T>inline void chkmn(T &x, T y) { if (y < x) x = y; }
template<class T>inline void chkmx(T &x, T y) { if (y > x) x = y; }

using namespace std;

template <int P>
class mod_int {
  using Z = mod_int;

private:
  static int mo(int x) { return x < 0 ? x + P : x; }

public:
  int x;
  int val() const { return x; }
  mod_int() : x(0) {}
  template <class T>
  mod_int(const T &x_) : x(x_ >= 0 && x_ < P ? static_cast<int>(x_) : mo(static_cast<int>(x_ % P))) {}
  bool operator==(const Z &rhs) const { return x == rhs.x; }
  bool operator!=(const Z &rhs) const { return x != rhs.x; }
  Z operator-() const { return Z(x ? P - x : 0); }
  Z pow(long long k) const {
    Z res = 1, t = *this;
    while (k) {
      if (k & 1) res *= t;
      if (k >>= 1) t *= t;
    }
    return res;
  }
  Z &operator++() {
    x < P - 1 ? ++x : x = 0;
    return *this;
  }
  Z &operator--() {
    x ? --x : x = P - 1;
    return *this;
  }
  Z operator++(int) {
    Z ret = x;
    x < P - 1 ? ++x : x = 0;
    return ret;
  }
  Z operator--(int) {
    Z ret = x;
    x ? --x : x = P - 1;
    return ret;
  }
  Z inv() const { return pow(P - 2); }
  Z &operator+=(const Z &rhs) {
    (x += rhs.x) >= P && (x -= P);
    return *this;
  }
  Z &operator-=(const Z &rhs) {
    (x -= rhs.x) < 0 && (x += P);
    return *this;
  }
  Z &operator*=(const Z &rhs) {
    x = 1ULL * x * rhs.x % P;
    return *this;
  }
  Z &operator/=(const Z &rhs) { return *this *= rhs.inv(); }
#define setO(T, o)                                 \
  friend T operator o(const Z &lhs, const Z &rhs) {\
    Z res = lhs;                                   \
    return res o## = rhs;                          \
  }
  setO(Z, +) setO(Z, -) setO(Z, *) setO(Z, /)
#undef setO
};
const int P = 1e9 + 7;
using Z = mod_int<P>;

using poly = vector<Z>;

poly operator+(poly f, poly g) {
  int n = SZ(f) - 1, m = SZ(g) - 1, k = max(n, m);
  poly h(k + 1, 0);
  rep (i, 0, n) h[i] += f[i];
  rep (i, 0, m) h[i] += g[i];
  return h;
}

poly operator*(poly f, poly g) {
  int n = SZ(f) - 1, m = SZ(g) - 1, k = n + m;
  poly h(k + 1, 0);
  rep (i, 0, n) rep (j, 0, m) h[i + j] += f[i] * g[j];
  return h;
}

const int maxn = 310;

int n, l[maxn], r[maxn], c[maxn], tot;
poly a[maxn][2], f[maxn][2][4];

inline int o(int x) { return __builtin_popcount(x) >= 2; }

Z calc(poly f, Z x) {
  Z res = 0;
  per (i, SZ(f) - 1, 0) res = res * x + f[i];
  return res;
}

namespace lag {
  int n;
  Z x[maxn], y[maxn];
  Z solve(int k) {
    Z ans = 0;
    rep (i, 1, n) {
      Z s1 = y[i], s2 = 1;
      rep (j, 1, n) if (i != j) {
        s1 = s1 * (k - x[j]);
        s2 = s2 * (x[i] - x[j]);
      }
      ans += s1 * s2.inv();
    }
    return ans;
  }
}

void work() {
  cin >> n, tot = 0;
  rep (i, 1, n) cin >> l[i];
  rep (i, 1, n) cin >> r[i];
  rep (i, 1, n) c[++tot] = l[i], c[++tot] = r[i] + 1;
  sort(c + 1, c + tot + 1), tot = unique(c + 1, c + tot + 1) - c - 1;
  rep (i, 1, n) l[i] = lower_bound(c + 1, c + tot + 1, l[i]) - c;
  rep (i, 1, n) r[i] = lower_bound(c + 1, c + tot + 1, r[i] + 1) - c;
  Z ans = 0;
  rep (d, 1, tot - 1) {
    rep (i, 1, n) {
      if (r[i] <= d) a[i][0] = poly({c[r[i]] - c[l[i]]}), a[i][1] = poly({0});
      else if (l[i] > d) a[i][0] = poly({0}), a[i][1] = poly({c[r[i]] - c[l[i]]});
      else a[i][0] = poly({-c[l[i]], 1}), a[i][1] = poly({c[r[i]], -1});
    }
    rep (i, 0, n) rep (j, 0, 1) rep (k, 0, 3) f[i][j][k] = poly({0});
    f[0][0][0] = poly({1});
    rep (i, 1, n) rep (j, 0, 1) rep (k, 0, 3) rep (p, 0, 1) {
      f[i][j | o(k << 1 | p)][(k << 1 | p) & 3] = f[i][j | o(k << 1 | p)][(k << 1 | p) & 3] + f[i - 1][j][k] * a[i][p];
    }
    poly res({0});
    rep (i, 0, 3) res = res + f[n][1][i];
    lag::n = n + 2;
    rep (i, 1, n + 2) lag::x[i] = i, lag::y[i] = lag::y[i - 1] + calc(res, i);
    ans += lag::solve(c[d + 1] - 1) - lag::solve(c[d] - 1);
  }
  cout << ans.val() << '\n';
}

int main() {
  cin.tie(nullptr) -> ios::sync_with_stdio(false);
  int t; cin >> t;
  while (t--) work();
}

详细

Test #1:

score: 0
Wrong Answer
time: 1ms
memory: 3636kb

input:

10
5
5 1 4 3 2
14 2 5 3 2
5
4 5 1 2 3
13 7 1 2 3
5
5 2 5 3 1
10 2 12 3 2
5
5 5 3 1 5
57 5 3 1 5
5
2 2 3 3 5
4 5 4 4 5
5
4 5 3 5 3
13 7 3 5 3
5
5 1 4 2 3
14 3 4 2 3
5
1 2 5 4 5
2 8 5 7 5
5
1 1 3 5 1
8 2 3 8 1
5
4 4 4 2 3
5 10 5 2 3

output:

180
170
650
265
134
113
120
296
192
103

result:

wrong answer 5th lines differ - expected: '182', found: '134'