QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#740277 | #9614. 分治 | hos_lyric | 65 | 1972ms | 18168kb | C++14 | 6.5kb | 2024-11-13 08:22:01 | 2024-11-13 08:22:01 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
constexpr int LIM_INV = 400'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
////////////////////////////////////////////////////////////////////////////////
/*
0: ceil child
1: floor child
ex. N = 11 = 1011(2):
0000
0001
001
0100
0101
011
1000
1001
101
110
111
reversed:
0000
0001
0010
100
101
110
111
1000
1001
1010
2^(L-1) <= N < 2^L
reversed:
[0, N - 2^(L-1)) in L bits
[N - 2^(L-1), 2^(L-1)) in (L-1) bits
[2^(L-1), N) in L bits
ans = \sum (1 + (longest contiguous 0))
= N + \sum[1<=k<=L] \sum [longest contiguous 0 >= k]
= N + \sum[1<=k<=L] (N - \sum [contiguous 0 < k])
[N - 2^(L-1), 2^(L-1)) and [2^(L-1), N): same as {0,1}^(L-1)
[0, N - 2^(L-1)):
ex. N = 22 = 10110(2)
00****
0100**
01010*
f[k][n] := \sum[s \in {0,1}^n] [contiguous 0 in s < k]
= [x^n] (1 - x^k) / (1 - 2 x + x^(k+1))
= [x^n] (1 - x^k) \sum[i>=0] (-1)^i x^((k+1)i) / (1-2x)^(i+1)
*/
int L;
char S[200'010];
Mint slow() {
vector<vector<Mint>> f(L + 1, vector<Mint>(L + 1, 0));
for (int k = 1; k <= L; ++k) {
f[k][0] = 1;
for (int n = 1; n <= k; ++n) f[k][n] = f[k][n - 1] * 2;
f[k][k] -= 1;
for (int n = k + 1; n <= L; ++n) f[k][n] = f[k][n - 1] * 2 - f[k][n - (k + 1)];
}
Mint n = 0;
for (int i = 0; i < L; ++i) (n *= 2) += (S[i] - '0');
Mint ans = (L + 1) * n;
for (int k = 1; k <= L; ++k) ans -= f[k][L - 1];
int mx = 1, now = 1;
for (int i = 1; i < L; ++i) {
if (S[i] == '0') {
chmax(mx, ++now);
} else {
// *^l -> 0^j 1 *^(l-j-1)
const int l = L - i - 1;
for (int j = 0; j <= l; ++j) {
for (int k = max(mx, now + 1 + j) + 1; k <= L; ++k) {
ans -= f[k][max(l - 1 - j, 0)];
}
}
now = 0;
}
}
return ans;
}
int main() {
for (; ~scanf("%s", S); ) {
L = strlen(S);
const Mint ans = slow();
printf("%u\n", ans.x);
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 0ms
memory: 3672kb
input:
110
output:
15
result:
ok 1 number(s): "15"
Test #2:
score: 10
Accepted
time: 0ms
memory: 3960kb
input:
101
output:
12
result:
ok 1 number(s): "12"
Subtask #2:
score: 10
Accepted
Dependency #1:
100%
Accepted
Test #3:
score: 10
Accepted
time: 0ms
memory: 3980kb
input:
111110
output:
198
result:
ok 1 number(s): "198"
Test #4:
score: 10
Accepted
time: 0ms
memory: 3688kb
input:
1001001
output:
253
result:
ok 1 number(s): "253"
Subtask #3:
score: 20
Accepted
Dependency #2:
100%
Accepted
Test #5:
score: 20
Accepted
time: 1ms
memory: 6008kb
input:
10100011000100111
output:
386882
result:
ok 1 number(s): "386882"
Test #6:
score: 20
Accepted
time: 0ms
memory: 4020kb
input:
111010011111010110
output:
1107742
result:
ok 1 number(s): "1107742"
Subtask #4:
score: 5
Accepted
Test #7:
score: 5
Accepted
time: 1ms
memory: 5924kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
412796008
result:
ok 1 number(s): "412796008"
Test #8:
score: 5
Accepted
time: 1ms
memory: 5924kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
818656648
result:
ok 1 number(s): "818656648"
Subtask #5:
score: 5
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Test #9:
score: 5
Accepted
time: 2ms
memory: 6196kb
input:
10000000100000010010011110111101101110000000000001100000011000111111010011010101010000101001110110010001100110000110111101000101001111101111001010001001011101011111010000100010111100110000001101111
output:
703266161
result:
ok 1 number(s): "703266161"
Test #10:
score: 5
Accepted
time: 2ms
memory: 3828kb
input:
110100000100001000101000010010101000110111101010110000101001001100100111000011100101110110010000001111010011101001111110110010001110011101001111010101100100010011101010101111111111010110001100100110
output:
330527406
result:
ok 1 number(s): "330527406"
Subtask #6:
score: 5
Accepted
Dependency #4:
100%
Accepted
Test #11:
score: 5
Accepted
time: 8ms
memory: 10524kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
340672883
result:
ok 1 number(s): "340672883"
Test #12:
score: 5
Accepted
time: 21ms
memory: 18168kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
555946758
result:
ok 1 number(s): "555946758"
Subtask #7:
score: 10
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Test #13:
score: 10
Accepted
time: 1682ms
memory: 17908kb
input:
110011100110101000000110101010111111001101101011010110100100110010111110110110000111011001110000101111110111011111000110001011011011101100001100100011010010111111010110010000101001001000100001100100000001000111110100000101001011100001100011011110110101101111110011100111001010001010001111001110111100...
output:
324123594
result:
ok 1 number(s): "324123594"
Test #14:
score: 10
Accepted
time: 1972ms
memory: 17932kb
input:
110100110100110110001011100000011010000010000101100100001101100100110000101000111001111100001110001001101010110010111101000100111010001011001110101010001101111010000011000010110011000011100101110100000001011100111000101111010100001101011010100101110000010001101001000100111001101101110000101101011011...
output:
209285599
result:
ok 1 number(s): "209285599"
Subtask #8:
score: 0
Memory Limit Exceeded
Dependency #6:
100%
Accepted
Test #15:
score: 0
Memory Limit Exceeded
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
result:
Subtask #9:
score: 0
Skipped
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Dependency #7:
100%
Accepted
Dependency #8:
0%