QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#740177 | #9614. 分治 | hos_lyric | 65 | 119ms | 7896kb | C++14 | 5.8kb | 2024-11-13 02:57:52 | 2024-11-13 02:57:52 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
/*
\sum[s \in {0,1}^L] (max length of contiguous 1's)
max < k
[x^L] (1 - x^k) / (1 - 2 x + x^(k+1))
= [x^L] (1 - x^k) \sum[i>=0] (-1)^i (x^(k+1))^i / (1-2x)^(i+1)
*/
int L;
char S[200'010];
pair<int, int> where[200'010][2];
Mint dp[200'010][2];
/*
10 11
|| /|
5 6
11 12
|\ ||
5 6
*/
pair<int, int> to(const pair<int, int> &p, int e) {
if (!~p.first || p == make_pair(L - 1, 0) || p == make_pair(L, 1)) {
return make_pair(-1, -1);
}
return make_pair(p.first + 1, (S[p.first] - '0') ? (p.second | e) : (p.second & e));
}
int main() {
for (; ~scanf("%s", S); ) {
L = strlen(S);
reverse(S, S + L);
Mint all = 0;
for (int i = L; --i >= 0; ) (all *= 2) += (S[i] - '0');
for (int i = 0; i <= L; ++i) for (int u = 0; u < 2; ++u) {
where[i][u] = make_pair(i, u);
}
Mint ans = 0;
for (int k = 1; k <= L; ++k) {
// where: go 1^k
for (int i = 0; i <= L; ++i) for (int u = 0; u < 2; ++u) if (!(i == L && u == 0)) {
where[i][u] = to(where[i][u], 1);
dp[i][u] = 0;
}
dp[L - 1][0] = 1;
dp[L][0] = 1;
dp[L][1] = 1;
for (int i = L; --i >= 0; ) for (int u = 0; u < 2; ++u) if (!(i == L - 1 && u == 0)) {
// 0, 1
for (int e = 0; e < 2; ++e) {
const auto p = to(make_pair(i, u), e);
dp[i][u] += dp[p.first][p.second];
}
// 1^k $
if (where[i][u] == make_pair(L - 1, 0) || where[i][u] == make_pair(L, 1)) {
dp[i][u] -= 1;
}
// 1^k 0
{
const auto p = to(where[i][u], 0);
if (~p.first) dp[i][u] -= dp[p.first][p.second];
}
}
// cerr<<"k = "<<k<<": "<<dp[0][0]<<endl;
// cerr<<" where = ";for(int i=0;i<=L;++i)cerr<<"["<<where[i][0]<<","<<where[i][1]<<"] ";cerr<<endl;
// cerr<<" dp = ";for(int i=0;i<=L;++i)cerr<<"["<<dp[i][0]<<","<<dp[i][1]<<"] ";cerr<<endl;
ans += (all - dp[0][0]);
}
ans += all;
printf("%u\n", ans.x);
}
return 0;
}
详细
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 1ms
memory: 5916kb
input:
110
output:
15
result:
ok 1 number(s): "15"
Test #2:
score: 10
Accepted
time: 1ms
memory: 5856kb
input:
101
output:
12
result:
ok 1 number(s): "12"
Subtask #2:
score: 10
Accepted
Dependency #1:
100%
Accepted
Test #3:
score: 10
Accepted
time: 0ms
memory: 3960kb
input:
111110
output:
198
result:
ok 1 number(s): "198"
Test #4:
score: 10
Accepted
time: 1ms
memory: 5940kb
input:
1001001
output:
253
result:
ok 1 number(s): "253"
Subtask #3:
score: 20
Accepted
Dependency #2:
100%
Accepted
Test #5:
score: 20
Accepted
time: 1ms
memory: 5788kb
input:
10100011000100111
output:
386882
result:
ok 1 number(s): "386882"
Test #6:
score: 20
Accepted
time: 0ms
memory: 3888kb
input:
111010011111010110
output:
1107742
result:
ok 1 number(s): "1107742"
Subtask #4:
score: 5
Accepted
Test #7:
score: 5
Accepted
time: 1ms
memory: 6000kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
412796008
result:
ok 1 number(s): "412796008"
Test #8:
score: 5
Accepted
time: 2ms
memory: 5928kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
output:
818656648
result:
ok 1 number(s): "818656648"
Subtask #5:
score: 5
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Test #9:
score: 5
Accepted
time: 2ms
memory: 5808kb
input:
10000000100000010010011110111101101110000000000001100000011000111111010011010101010000101001110110010001100110000110111101000101001111101111001010001001011101011111010000100010111100110000001101111
output:
703266161
result:
ok 1 number(s): "703266161"
Test #10:
score: 5
Accepted
time: 2ms
memory: 7896kb
input:
110100000100001000101000010010101000110111101010110000101001001100100111000011100101110110010000001111010011101001111110110010001110011101001111010101100100010011101010101111111111010110001100100110
output:
330527406
result:
ok 1 number(s): "330527406"
Subtask #6:
score: 5
Accepted
Dependency #4:
100%
Accepted
Test #11:
score: 5
Accepted
time: 31ms
memory: 3924kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
340672883
result:
ok 1 number(s): "340672883"
Test #12:
score: 5
Accepted
time: 89ms
memory: 3808kb
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
555946758
result:
ok 1 number(s): "555946758"
Subtask #7:
score: 10
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Test #13:
score: 10
Accepted
time: 119ms
memory: 5868kb
input:
110011100110101000000110101010111111001101101011010110100100110010111110110110000111011001110000101111110111011111000110001011011011101100001100100011010010111111010110010000101001001000100001100100000001000111110100000101001011100001100011011110110101101111110011100111001010001010001111001110111100...
output:
324123594
result:
ok 1 number(s): "324123594"
Test #14:
score: 10
Accepted
time: 117ms
memory: 6012kb
input:
110100110100110110001011100000011010000010000101100100001101100100110000101000111001111100001110001001101010110010111101000100111010001011001110101010001101111010000011000010110011000011100101110100000001011100111000101111010100001101011010100101110000010001101001000100111001101101110000101101011011...
output:
209285599
result:
ok 1 number(s): "209285599"
Subtask #8:
score: 0
Time Limit Exceeded
Dependency #6:
100%
Accepted
Test #15:
score: 0
Time Limit Exceeded
input:
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
result:
Subtask #9:
score: 0
Skipped
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Dependency #5:
100%
Accepted
Dependency #6:
100%
Accepted
Dependency #7:
100%
Accepted
Dependency #8:
0%