QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#736530 | #7623. Coloring Tape | maspy | AC ✓ | 131ms | 5624kb | C++23 | 21.8kb | 2024-11-12 11:39:30 | 2024-11-12 11:39:31 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/setfunc/zeta.hpp"
template <typename T>
void superset_zeta(vc<T>& A) {
int log = topbit(len(A));
assert(1 << log == len(A));
FOR(n, log) FOR(s, 1 << log) {
int t = s ^ (1 << n);
if (s < t) A[s] += A[t];
}
}
template <typename T>
void superset_mobius(vc<T>& A) {
int log = topbit(len(A));
assert(1 << log == len(A));
FOR(n, log) FOR(s, 1 << log) {
int t = s ^ (1 << n);
if (s < t) A[s] -= A[t];
}
}
template <typename T>
void subset_zeta(vc<T>& A) {
int log = topbit(len(A));
assert(1 << log == len(A));
FOR(n, log) FOR(s, 1 << log) {
int t = s ^ (1 << n);
if (s > t) A[s] += A[t];
}
}
template <typename T>
void subset_mobius(vc<T>& A) {
int log = topbit(len(A));
assert(1 << log == len(A));
FOR(n, log) FOR(s, 1 << log) {
int t = s ^ (1 << n);
if (s > t) A[s] -= A[t];
}
}
#line 6 "main.cpp"
using mint = modint998;
/*
2^14 状態
それこそsame,diffの列で2^13遷移?
2^13遷移を列挙、左右の状態を列挙
上下も決める
右側は終点ごとに出るかどうかを決める
状態おおすぎ!
終点集合に遷移したあとゼータ変換というふうに分解する
*/
void solve() {
LL(N, M, R);
vvc<pair<int, int>> edge(1 << (N - 1));
vvc<int> color(1 << (N - 1));
FOR(s, 1 << (N - 1)) {
vc<int> cut;
cut.eb(0);
FOR(i, N - 1) if (s >> i & 1) cut.eb(i + 1);
cut.eb(N);
vc<int> A(N);
FOR(k, len(cut) - 1) FOR(i, cut[k], cut[k + 1]) A[i] = k;
color[s] = A;
auto dfs = [&](auto& dfs, int p, int L, int R) -> void {
if (p == len(cut) - 1) {
// FOR_subset(r, R) { edge[s].eb(L, r); }
edge[s].eb(L, R);
return;
}
int a = cut[p], b = cut[p + 1];
// [a,b)
if (b == a + 1) {
dfs(dfs, p + 1, L | 1 << a, R | 1 << a);
} else {
dfs(dfs, p + 1, L | 1 << a, R | 1 << (b - 1));
dfs(dfs, p + 1, L | 1 << (b - 1), R | 1 << a);
}
};
dfs(dfs, 0, 0, 0);
}
// ll cnt = 0;
// FOR(i, len(edge)) cnt += len(edge[i]);
// SHOW(cnt);
// col -> x,y,diff
vvc<tuple<int, int, int>> cond(M);
FOR(R) {
INT(c, x, y, diff);
--c, --x, --y;
cond[c].eb(x, y, diff);
}
vc<mint> dp(1 << N);
dp[(1 << N) - 1] = 1;
// 最初の列は全部だよね
FOR(c, M) {
vc<mint> newdp(1 << N);
FOR(s, 1 << (N - 1)) {
bool valid = 1;
for (auto& [x, y, diff]: cond[c]) {
if (diff != (color[s][x] != color[s][y])) valid = 0;
}
if (!valid) continue;
for (auto& [L, R]: edge[s]) newdp[R] += dp[L];
}
swap(dp, newdp);
superset_zeta(dp);
}
print(dp[0]);
}
signed main() { solve(); }
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3640kb
input:
3 5 3 3 2 3 0 4 1 2 0 5 1 3 0
output:
19
result:
ok 1 number(s): "19"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3524kb
input:
5 10 10 9 3 4 1 2 4 5 0 7 2 3 0 9 2 3 0 6 3 5 0 6 2 4 1 2 4 5 0 1 1 3 1 7 2 4 0 10 2 3 0
output:
1514
result:
ok 1 number(s): "1514"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
5 10 20 8 4 5 0 2 2 5 1 8 4 5 0 10 3 5 0 7 1 3 1 1 2 4 1 6 3 5 1 10 3 5 0 4 1 5 1 7 3 4 1 2 2 4 1 8 3 4 0 9 3 5 0 5 2 5 1 9 4 5 0 9 1 2 0 6 1 5 1 8 3 5 0 2 2 4 1 8 3 5 0
output:
28131
result:
ok 1 number(s): "28131"
Test #4:
score: 0
Accepted
time: 2ms
memory: 3744kb
input:
10 100 200 95 5 7 0 7 4 6 1 62 9 10 0 32 5 8 1 31 2 6 1 75 7 9 1 1 4 7 1 18 7 10 1 75 1 8 1 87 6 9 1 44 7 8 1 68 6 9 1 95 4 6 0 34 1 2 1 70 1 6 1 31 5 9 1 15 6 10 1 48 5 8 1 51 3 7 1 39 5 9 1 23 2 3 1 7 8 9 1 84 7 10 1 13 4 9 1 18 3 6 1 59 9 10 0 31 8 10 1 6 7 9 1 76 3 10 1 41 5 6 0 33 3 4 1 96 1 10...
output:
655333622
result:
ok 1 number(s): "655333622"
Test #5:
score: 0
Accepted
time: 3ms
memory: 3776kb
input:
10 200 200 106 9 10 0 93 4 10 1 199 3 7 0 73 2 9 1 105 8 9 0 38 9 10 1 73 8 10 1 153 3 9 1 123 2 5 1 159 7 9 0 154 5 7 1 162 3 7 0 113 1 5 1 131 7 9 1 67 4 6 1 178 6 10 0 157 7 9 0 147 9 10 0 154 7 10 0 123 3 4 1 39 8 10 1 139 2 9 1 191 9 10 0 36 4 5 1 17 2 8 1 124 3 7 1 9 9 10 1 71 9 10 1 181 7 8 0...
output:
552037151
result:
ok 1 number(s): "552037151"
Test #6:
score: 0
Accepted
time: 3ms
memory: 3780kb
input:
10 300 200 252 1 5 0 48 9 10 1 18 9 10 1 233 9 10 0 195 2 9 1 125 2 5 1 263 7 9 1 24 1 6 1 258 2 10 1 272 8 10 1 76 5 7 1 147 1 7 1 93 9 10 1 30 6 9 1 10 1 10 1 56 2 10 1 93 8 9 1 206 6 9 1 65 1 9 1 226 3 5 0 88 7 8 1 151 3 4 1 292 9 10 0 129 2 3 1 292 9 10 0 180 7 10 1 4 5 10 1 10 9 10 1 151 4 7 1 ...
output:
4494096
result:
ok 1 number(s): "4494096"
Test #7:
score: 0
Accepted
time: 2ms
memory: 3684kb
input:
10 500 300 210 4 7 1 341 8 9 0 371 2 5 0 21 4 10 1 370 8 9 0 368 1 6 0 395 7 9 0 287 6 10 1 299 3 7 1 379 1 9 1 164 4 10 1 390 7 9 0 455 6 9 0 208 8 10 1 402 3 10 0 112 8 10 1 279 3 10 1 180 7 10 1 456 2 6 0 121 5 6 1 312 5 7 0 335 8 10 0 318 2 10 1 497 8 10 0 108 8 9 0 247 3 6 1 155 5 6 1 308 1 2 0...
output:
705403853
result:
ok 1 number(s): "705403853"
Test #8:
score: 0
Accepted
time: 24ms
memory: 4136kb
input:
12 500 300 115 3 10 1 152 10 12 1 89 8 12 1 276 4 7 0 467 6 7 0 405 5 9 0 189 4 9 1 197 1 3 1 341 7 8 0 67 7 8 1 266 2 6 1 78 8 12 1 317 11 12 0 417 8 10 0 380 2 8 0 255 2 5 1 80 7 9 1 317 5 11 1 470 5 9 0 373 3 4 0 413 4 10 0 393 9 12 0 362 8 10 1 42 7 12 1 486 3 5 0 229 1 5 0 224 6 7 0 55 3 10 1 4...
output:
378086467
result:
ok 1 number(s): "378086467"
Test #9:
score: 0
Accepted
time: 25ms
memory: 4420kb
input:
12 500 500 54 11 12 1 325 10 11 0 83 2 3 1 148 3 10 1 165 3 11 1 16 11 12 1 363 8 10 1 78 11 12 1 258 4 12 1 237 8 11 1 403 2 10 1 354 1 9 1 234 4 7 1 454 9 11 0 160 11 12 1 393 1 3 0 375 9 11 0 494 1 3 0 200 6 12 1 414 11 12 0 217 9 10 0 92 5 9 1 172 5 6 1 110 8 12 1 339 4 12 1 429 2 4 0 29 10 11 1...
output:
948753642
result:
ok 1 number(s): "948753642"
Test #10:
score: 0
Accepted
time: 119ms
memory: 5516kb
input:
14 500 500 362 4 12 1 225 5 9 1 428 5 9 1 101 8 10 1 488 5 9 0 249 11 14 1 232 2 6 1 220 4 10 1 20 7 13 1 154 4 13 1 480 8 14 0 9 2 4 1 201 7 10 1 174 10 11 0 169 13 14 0 256 10 12 1 403 11 13 0 492 10 14 0 167 6 12 1 123 11 13 1 471 9 10 0 77 5 9 1 51 6 10 1 411 11 14 1 422 11 13 0 7 1 7 1 284 5 11...
output:
103280588
result:
ok 1 number(s): "103280588"
Test #11:
score: 0
Accepted
time: 130ms
memory: 5380kb
input:
14 500 0
output:
750061283
result:
ok 1 number(s): "750061283"
Test #12:
score: 0
Accepted
time: 125ms
memory: 5456kb
input:
14 495 0
output:
662120858
result:
ok 1 number(s): "662120858"
Test #13:
score: 0
Accepted
time: 127ms
memory: 5484kb
input:
14 490 0
output:
456608006
result:
ok 1 number(s): "456608006"
Test #14:
score: 0
Accepted
time: 131ms
memory: 5384kb
input:
14 500 5 123 7 12 1 24 13 14 1 170 6 13 1 304 2 8 1 475 10 11 0
output:
715116697
result:
ok 1 number(s): "715116697"
Test #15:
score: 0
Accepted
time: 129ms
memory: 5448kb
input:
14 500 10 237 5 9 1 36 3 14 1 470 5 13 1 315 4 6 1 28 9 12 1 220 11 14 0 160 9 12 1 312 10 11 0 72 7 12 1 230 8 11 0
output:
434022866
result:
ok 1 number(s): "434022866"
Test #16:
score: 0
Accepted
time: 130ms
memory: 5624kb
input:
14 500 15 339 5 10 1 326 4 7 1 421 12 14 0 225 13 14 1 307 1 3 0 285 2 4 0 33 8 10 1 226 2 3 0 478 13 14 1 347 5 11 1 138 5 13 1 141 9 14 1 417 2 8 1 172 6 11 1 222 7 14 1
output:
268520991
result:
ok 1 number(s): "268520991"
Test #17:
score: 0
Accepted
time: 130ms
memory: 5476kb
input:
14 500 20 357 5 14 1 296 10 14 1 490 9 10 0 221 11 12 1 490 12 13 0 469 5 13 1 93 2 8 1 482 12 14 0 461 2 7 1 152 2 13 1 34 8 14 1 60 9 12 1 195 4 5 0 1 6 8 1 3 5 11 1 129 11 13 1 124 13 14 1 434 11 13 0 141 4 5 1 80 6 12 1
output:
691528902
result:
ok 1 number(s): "691528902"
Test #18:
score: 0
Accepted
time: 124ms
memory: 5340kb
input:
14 500 100 85 13 14 0 130 2 7 0 38 5 10 0 450 1 2 1 103 8 10 0 410 11 14 1 39 10 14 0 29 3 4 0 98 9 11 0 226 6 9 1 17 5 6 0 475 9 12 1 337 12 13 1 42 10 11 0 457 8 10 1 49 1 2 0 222 9 13 0 105 7 11 0 403 6 8 1 151 2 8 0 13 11 12 0 483 10 14 1 304 5 9 1 197 5 14 0 58 4 7 0 482 1 12 1 331 12 13 1 398 ...
output:
0
result:
ok 1 number(s): "0"
Test #19:
score: 0
Accepted
time: 119ms
memory: 5264kb
input:
14 498 200 457 10 13 0 163 6 10 0 23 2 5 0 109 5 8 0 113 12 14 0 294 10 12 0 1 10 14 0 451 1 2 0 275 1 13 0 345 10 14 0 171 2 9 0 392 8 11 0 184 13 14 0 328 10 11 0 84 10 13 0 238 6 12 0 306 6 13 0 56 8 14 0 404 10 14 0 90 3 10 0 446 12 14 0 303 9 11 0 71 11 12 0 362 10 13 0 405 13 14 1 258 4 13 0 1...
output:
0
result:
ok 1 number(s): "0"
Test #20:
score: 0
Accepted
time: 116ms
memory: 5464kb
input:
14 497 300 265 5 12 0 368 6 14 0 400 3 10 0 408 13 14 1 494 9 11 1 8 13 14 0 132 10 14 0 203 4 10 0 86 13 14 0 96 3 9 0 39 11 14 0 439 8 9 0 161 1 13 0 264 1 7 0 176 8 10 0 8 10 12 0 299 2 13 0 285 1 13 0 392 7 8 1 143 11 13 0 84 10 11 1 270 1 9 0 311 8 10 0 39 5 10 0 282 4 11 0 45 9 10 0 465 12 14 ...
output:
0
result:
ok 1 number(s): "0"
Test #21:
score: 0
Accepted
time: 111ms
memory: 5596kb
input:
14 499 500 349 7 10 0 440 11 13 0 391 5 11 0 461 8 10 1 172 12 14 0 139 5 10 0 79 3 4 0 456 10 11 0 276 11 14 0 484 5 6 1 178 11 13 0 295 8 11 0 384 3 8 0 112 9 11 0 170 3 7 0 490 12 14 1 243 7 9 0 360 4 7 0 302 10 12 0 266 5 8 0 350 8 12 0 282 7 12 0 480 7 11 1 312 10 13 0 356 13 14 0 277 4 5 0 245...
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 131ms
memory: 5572kb
input:
14 500 3 2 1 2 0 2 2 3 0 2 1 3 1
output:
0
result:
ok 1 number(s): "0"
Test #23:
score: 0
Accepted
time: 0ms
memory: 3916kb
input:
1 500 0
output:
1
result:
ok 1 number(s): "1"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3708kb
input:
4 2 0
output:
17
result:
ok 1 number(s): "17"
Extra Test:
score: 0
Extra Test Passed