QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#732542 | #9574. Strips | maspy | AC ✓ | 45ms | 6744kb | C++23 | 26.3kb | 2024-11-10 15:04:01 | 2024-11-10 15:04:01 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "library/ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 2 "library/alg/monoid/min_idx.hpp"
template <typename T, bool tie_is_left = true>
struct Monoid_Min_Idx {
using value_type = pair<T, int>;
using X = value_type;
static constexpr bool is_small(const X& x, const X& y) {
if (x.fi < y.fi) return true;
if (x.fi > y.fi) return false;
return (tie_is_left ? (x.se < y.se) : (x.se >= y.se));
}
static X op(X x, X y) { return (is_small(x, y) ? x : y); }
static constexpr X unit() { return {infty<T>, -1}; }
static constexpr bool commute = true;
};
#line 1 "library/convex/cht.hpp"
namespace CHT {
template <typename T>
struct Line {
mutable T k, m, p;
bool operator<(const Line& o) const { return k < o.k; }
bool operator<(T x) const { return p < x; }
};
template <typename T>
T lc_inf() {
return numeric_limits<T>::max();
}
template <>
long double lc_inf<long double>() {
return 1 / .0;
}
template <typename T>
T lc_div(T a, T b) {
return a / b - ((a ^ b) < 0 and a % b);
}
template <>
long double lc_div(long double a, long double b) {
return a / b;
};
template <>
double lc_div(double a, double b) {
return a / b;
};
template <typename T, bool MINIMIZE = true>
struct LineContainer : multiset<Line<T>, less<>> {
using super = multiset<Line<T>, less<>>;
using super::begin, super::end, super::insert, super::erase;
using super::empty, super::lower_bound;
T inf = lc_inf<T>();
bool insect(typename super::iterator x, typename super::iterator y) {
if (y == end()) return x->p = inf, false;
if (x->k == y->k)
x->p = (x->m > y->m ? inf : -inf);
else
x->p = lc_div(y->m - x->m, x->k - y->k);
return x->p >= y->p;
}
void add(T k, T m) {
if (MINIMIZE) { k = -k, m = -m; }
auto z = insert({k, m, 0}), y = z++, x = y;
while (insect(y, z)) z = erase(z);
if (x != begin() and insect(--x, y)) insect(x, y = erase(y));
while ((y = x) != begin() and (--x)->p >= y->p) insect(x, erase(y));
}
T query(T x) {
assert(!empty());
auto l = *lower_bound(x);
T v = (l.k * x + l.m);
return (MINIMIZE ? -v : v);
}
};
}; // namespace CHT
using namespace CHT;
template <typename T>
using CHT_min = LineContainer<T, true>;
template <typename T>
using CHT_max = LineContainer<T, false>;
/*
long long / double で動くと思う。クエリあたり O(log N)
・add(a, b, i=-1):ax + by の追加 (index=i)
・get_max(x,y):(ax + by,i)
・get_min(x,y):(ax + by,i)
*/
template <typename T>
struct CHT_xy {
static_assert(is_same_v<T, ll> || std::is_floating_point_v<T>);
using ld = long double;
CHT_min<ld> cht_min;
CHT_max<ld> cht_max;
T amax = -infty<T>, amin = infty<T>;
T bmax = -infty<T>, bmin = infty<T>;
int amax_idx = -1, amin_idx = -1;
int bmax_idx = -1, bmin_idx = -1;
bool empty = true;
map<pair<T, T>, int> MP;
void clear() {
empty = true;
cht_min.clear();
cht_max.clear();
}
void add(T a, T b, int i = -1) {
empty = false;
cht_min.add(b, a);
cht_max.add(b, a);
pair<T, T> p = {a, b};
MP[p] = i;
if (chmax(amax, a)) amax_idx = i;
if (chmin(amin, a)) amin_idx = i;
if (chmax(bmax, b)) bmax_idx = i;
if (chmin(bmin, b)) bmin_idx = i;
}
pair<T, int> get_max(T x, T y) {
if (cht_min.empty()) return {-infty<T>, -1};
if (x == 0) {
if (bmax * y > bmin * y) { return {bmax * y, bmax_idx}; }
return {bmin * y, bmin_idx};
}
ld z = ld(y) / x;
if (x > 0) {
auto l = cht_max.lower_bound(z);
T a = l->m, b = l->k;
pair<T, T> p = {a, b};
int idx = MP[p];
return {a * x + b * y, idx};
}
auto l = cht_min.lower_bound(z);
T a = -(l->m), b = -(l->k);
pair<T, T> p = {a, b};
int idx = MP[p];
return {a * x + b * y, idx};
}
pair<T, int> get_min(T x, T y) {
auto [f, i] = get_max(-x, -y);
return {-f, i};
}
};
#line 8 "main.cpp"
void solve() {
LL(N, M, K, W);
VEC(ll, A, N);
VEC(ll, B, M);
B.eb(0), B.eb(W + 1);
sort(all(A));
sort(all(B));
vi ANS;
auto sub = [&](ll L, ll R, vi A) -> vi {
vi ANS;
for (auto& x: A) {
if (len(ANS) && ANS.back() + K > x) continue;
ANS.eb(x);
}
ll n = len(ANS);
if (n * K > R - L) return {};
ll nxt = R;
FOR_R(i, len(ANS)) {
if (ANS[i] + K <= nxt) break;
ANS[i] = nxt - K;
nxt = ANS[i];
}
return ANS;
};
FOR(k, len(B) - 1) {
ll a = B[k], b = B[k + 1];
ll s = LB(A, a), t = LB(A, b);
vi AA;
FOR(i, s, t) AA.eb(A[i]);
if (AA.empty()) continue;
vi ans = sub(a + 1, b, AA);
if (ans.empty()) return print(-1);
concat(ANS, ans);
}
print(len(ANS));
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3496kb
input:
4 5 2 3 16 7 11 2 9 14 13 5 3 2 4 11 6 10 2 1 11 2 1 2 6 1 5 3 2 1 2 6 1 5 2
output:
4 2 7 10 14 -1 2 1 5 -1
result:
ok ok 4 cases (4 test cases)
Test #2:
score: 0
Accepted
time: 16ms
memory: 4212kb
input:
11000 3 8 2 53 32 3 33 35 19 38 20 1 30 10 6 7 10 1 42 3 14 4 36 28 40 22 17 20 12 41 27 7 1 19 13 9 6 6 13 78 55 76 53 32 54 58 62 45 21 4 7 61 8 7 3 68 9 26 54 31 22 3 38 65 34 16 58 47 52 29 53 5 8 4 33 33 5 30 6 15 27 12 9 28 19 2 13 10 6 1 2 48 8 12 48 1 41 31 40 7 6 7 61 20 19 30 52 49 17 40 3...
output:
2 3 32 7 3 4 14 22 28 36 40 3 32 48 66 8 3 9 22 26 31 38 54 65 3 5 15 30 6 1 8 12 31 41 47 4 17 30 39 49 2 52 67 1 27 1 22 1 62 5 24 33 43 48 60 2 4 31 3 11 20 31 3 3 16 33 3 25 30 42 3 3 17 60 4 1 11 21 33 2 54 66 3 50 59 65 3 50 62 78 1 81 4 2 11 16 23 5 3 7 17 36 49 2 1 45 2 7 25 1 4 4 9 18 29 32...
result:
ok ok 11000 cases (11000 test cases)
Test #3:
score: 0
Accepted
time: 25ms
memory: 5832kb
input:
2 62980 100000 9859 200000 132897 135912 27509 54599 183887 53114 127233 138596 120860 52471 83158 110644 114040 34102 100501 94779 188044 118947 57443 93009 179886 117863 142316 103026 133746 181956 88732 133751 178946 135462 99588 142382 116231 142902 98641 93039 34860 180746 34292 64655 31584 265...
output:
10 25298 45553 55916 80278 91309 101654 112655 127053 138336 178309 10 19008292 88443553 141719421 296188093 362431412 454873168 535773187 620493211 771767782 925311474
result:
ok ok 2 cases (2 test cases)
Test #4:
score: 0
Accepted
time: 28ms
memory: 5452kb
input:
2 62968 100000 987 200000 132608 47259 159851 136656 33393 145766 92631 125475 63424 186957 111759 164400 22296 95239 28164 39213 176169 72721 179002 29390 26931 55261 57111 143625 62022 48092 13696 31056 31569 136324 120007 167521 106377 119894 48641 106130 151757 146461 151941 92629 57328 134514 1...
output:
100 562 1592 5467 9868 11009 13012 14623 16508 20465 21483 24037 26079 27895 29239 30705 32052 33064 34282 38471 40932 42029 43429 44471 45848 47154 48454 51256 52449 55048 56388 58340 60318 61620 62764 64617 66496 67760 69515 70897 72155 74261 76183 77224 78525 83084 85061 87039 88856 91678 92834 9...
result:
ok ok 2 cases (2 test cases)
Test #5:
score: 0
Accepted
time: 24ms
memory: 5604kb
input:
2 11000 100000 11 200000 163012 113063 193436 164804 38223 97954 77455 12645 65893 7472 154060 115066 197136 68157 57696 125883 36460 36327 2594 182329 52863 9384 142218 108307 164812 102263 68023 123052 114544 38027 42624 82629 131406 110330 63104 198666 154174 168712 164172 28565 120683 174248 170...
output:
1000 263 350 1037 1048 1158 1258 1339 1797 1837 1856 2473 2512 2593 2721 2807 3624 3751 3893 4073 4577 4984 5418 5458 5817 6409 6723 7120 7320 7467 7736 7999 8249 8406 8520 8912 8926 9034 9293 9326 9337 9377 9461 9479 9529 9557 9926 10040 10424 10570 10754 10815 11241 11271 11390 11495 11703 11824 1...
result:
ok ok 2 cases (2 test cases)
Test #6:
score: 0
Accepted
time: 37ms
memory: 6304kb
input:
2 60562 100000 9 200000 124614 82957 175069 159802 77713 148208 87119 195619 137203 187199 151696 49407 92632 129159 22947 9508 83213 155794 8801 14455 4343 187591 112872 118191 84055 164173 127507 13848 193356 103420 67764 102061 151883 129600 112204 64020 118263 44490 15496 61703 177926 140419 918...
output:
9999 10 24 39 54 66 98 127 136 175 189 221 237 249 263 300 350 371 383 402 414 432 442 458 474 487 511 522 533 555 581 592 612 657 669 685 696 706 748 774 791 829 883 903 930 948 1015 1035 1046 1076 1103 1122 1151 1162 1234 1253 1262 1276 1286 1297 1312 1326 1361 1384 1398 1409 1429 1441 1472 1487 1...
result:
ok ok 2 cases (2 test cases)
Test #7:
score: 0
Accepted
time: 45ms
memory: 6744kb
input:
2 78636 100000 2 1000000 160618 689882 425029 248098 24811 473647 831221 372052 602440 158077 883901 645470 489547 863556 32157 371442 621866 941885 650516 873053 188342 224449 770318 464999 453057 304754 700410 82432 583687 478953 393561 989660 199977 458427 411530 814363 964896 69063 874312 224036...
output:
62519 13 17 21 26 65 102 105 132 148 168 189 217 237 257 270 276 280 285 287 290 299 346 361 375 386 408 416 427 430 433 439 441 444 455 463 472 475 496 501 525 557 568 571 629 637 650 656 669 694 742 759 764 772 809 819 837 842 863 869 899 913 939 958 968 988 1002 1010 1022 1040 1057 1060 1082 1097...
result:
ok ok 2 cases (2 test cases)
Extra Test:
score: 0
Extra Test Passed